光纖頻寬速度的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

光纖頻寬速度的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦井上伸雄寫的 圖解 電波與光的基礎和運用 和(美)戈文德·P.阿戈沃的 非線性光纖光學(第五版)都 可以從中找到所需的評價。

另外網站服務介紹 - 台北光纖也說明:不論你正準備想要聽音樂、看電影、或是玩遊戲,台北光纖高達1000M的下載速度,可以 ... 台北光纖的網路是對稱頻寬,可以同速率雙向飆網,上傳與下載一樣快,更優於一般 ...

這兩本書分別來自台灣東販 和電子工業所出版 。

國立臺灣科技大學 電子工程系 周錫熙所指導 徐哲謙的 基於自注入鎖定之非對稱式雙向無線光通訊之研究 (2021),提出光纖頻寬速度關鍵因素是什麼,來自於自注入鎖定、無線光通訊。

而第二篇論文國立中山大學 光電工程學系研究所 王俊達所指導 林穎璨的 應用於矽光子光纖陀螺儀之氮化矽光柵耦合器與多模干涉波導交叉設計 (2021),提出因為有 干涉式光纖陀螺儀、矽光子、氮化矽、波導交叉、光柵耦合器的重點而找出了 光纖頻寬速度的解答。

最後網站HiNet光世代「速在必行」光纖上網500M/250M 業界最快上傳 ...則補充:HiNet光世代提供優於業界最高的上傳頻寬(註1),以500Mbps搭配上傳速率250Mbps,無論是遠距辦公、視訊會議、居家上課、或是上傳雲端備份檔案、影片或 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了光纖頻寬速度,大家也想知道這些:

圖解 電波與光的基礎和運用

為了解決光纖頻寬速度的問題,作者井上伸雄 這樣論述:

從技術的歷史講起,最適合入門者的一本書!   當今世界可說是由「電波」建構而成。我們的周遭隨處可見電波的存在,如廣播、電視、手機、Wi-fi、藍牙等。與電波同屬電磁波的「光」也一樣。除了照明用的燈光之外,我們也會將光的各種特性應用在我們的日常生活中。   各種「電波與光」的尖端技術支持著現代社會,要瞭解這些技術的原理,就必須學會基礎知識才行。   將高中物理的內容簡化,   一本搞懂「電波與光」的誕生與應用!   本書會盡量擺脫複雜難解的數學公式,結合最新、最切身的具體實例,簡單說明各種生活中的物理現象。   不同於一般教科書將各個理論拆開說明,讓我們從起點「電波的發現」開始,隨

著簡潔直白的文字,循序漸進認識這個世界吧!   第一章 生活中不可或缺的電波   第二章 電磁波的本質   第三章 電波和光是同樣的東西   第四章 光的各種性質   第五章 接下來是光子學的時代  

基於自注入鎖定之非對稱式雙向無線光通訊之研究

為了解決光纖頻寬速度的問題,作者徐哲謙 這樣論述:

本論文提出了基於自注入鎖定架構之非對稱式雙向無線光通訊系統,此系統為了改善非對稱式雙向無線光通訊系統上行傳輸功率不足的問題,在系統端以自注入鎖定技術作為提升上行傳輸功率的方式,並使用空間光調變器作為動態繞射元件,使傳輸光束產生繞射角度,達到增加用戶端移動範圍的效果。而在用戶端方面更透過設計貓眼系統作為調變式復歸反射器,將上行光束接收並調變後以平行於入射光之路徑返回系統端做接收,可以免去用戶端準值系統的設置成本等問題,進而降低用戶端的體積與重量,增加系統的可攜帶性,達成無線光通訊中的雙向傳輸。從實驗之量測結果分析得知本論文所提之架構在使用C-band光源時可以達到線寬減小 0.08 nm、調變

頻寬提升 9.82 GHz、側模抑制比為 26.58 dB、功率增益為 23 dB之效能。而鏈路速度在超過 1.5 Gbits / s的情況下進行上行與下行雙向鏈路數據傳輸,其品質因子皆超過12 dB。此外本論文亦針對目前使用軌道角動量多工技術來增加上行通道傳輸容量之非對稱式雙向無線光通訊系統所可能面臨的通道衝突等問題提出一具有OAM交換功能之節點之設計來避免上行通道衝突的問題。透過本論文所提之設計不僅將能避免OAM通道衝突之問題產生並且亦能同時達成OAM通道交換之功能,預期將能成為未來實現非對稱式雙向無線光通訊系統不可或缺之關鍵性技術。

非線性光纖光學(第五版)

為了解決光纖頻寬速度的問題,作者(美)戈文德·P.阿戈沃 這樣論述:

光纖是20世紀的重大發明之一,其導光性能臻于完美,很難想像還會有更好的替代者。    《非線性光纖光學(光學與光電子學第5版)/經典譯叢》是光學、光子學和光纖通信領域的重要譯著,主要內容包括脈衝在光纖中的傳輸、群速度色散、自相位元元調製、光孤子、偏振效應、交叉相位調製、受激喇曼散射、受激布裡淵散射、四波混頻、高非線性光纖、新型非線性現象、超連續譜產生等內容,科學歸納為非線性光纖光學,側重於基本概念和原理,也涉及了一些應用。    《非線性光纖光學(光學與光電子學第5版)/經典譯叢》理論嚴謹,處處結合實際例證,特別是緊密結合光纖非線性光學、光纖通信領域的新成果與新問題,圖文並茂,說清講透,且各章

都附有習題,適合作為光學、物理學、電子工程等專業的本科生和研究生教學用書,同時對從事光通信產業的工程技術人員和從事光纖光學、非線性光學的科學家也是一本非常有用的參考書。 美國羅切斯特大學James C. Wyant光學教授,OSA期刊Advances in Optics and Photonics主編(2014~2019),2012年IEEE量子電子學獎獲得者,2015年Esther Hoffman Beller獎章獲得者,2019年Max Born獎獲得者。世界光電子和光通信領域的著名學者,在非線性光學和光纖通信領域著作頗豐。OSA會士,IEEE終身會士。

第1章 導論 1.1 歷史的回顧 1.2 光纖的基本特性 1.2.1 材料和製造 1.2.2 光纖損耗 1.2.3 色度色散 1.2.4 偏振模色散 1.3 光纖非線性 1.3.1 非線性折射 1.3.2 受激非彈性散射 1.3.3 非線性效應的重要性 1.4 綜述 習題 參考文獻 第2章 脈衝在光纖中的傳輸 2.1 麥克斯韋方程組 2.2 光纖模式 2.2.1 本征值方程 2.2.2 單模條件 2.2.3 基模特性 2.3 脈衝傳輸方程 2.3.1 非線性脈衝傳輸 2.3.2 高階非線性效應 2.3.3 喇曼回應函數及其作用 2.3.4 延伸到多模光纖 2.4 數值方法 2.4.

1 分步傅裡葉法 2.4.2 有限差分法 習題 參考文獻 第3章 群速度色散 3.1 不同的傳輸區域 3.2 色散感應的脈衝展寬 3.2.1 高斯脈衝 3.2.2 啁啾高斯脈衝 3.2.3 雙曲正割脈衝 3.2.4 超高斯脈衝 3.2.5 實驗結果 3.3 三階色散 3.3.1 啁啾高斯脈衝的演化 3.3.2 展寬因數 3.3.3 任意形狀脈衝 3.3.4 超短脈衝測量 3.4 色散管理 3.4.1 群速度色散引起的限制 3.4.2 色散補償 3.4.3 三階色散補償 習題 參考文獻 第4章 自相位元調製 4.1 自相位元調製感應頻譜變化 4.1.1 非線性相移 4.1.2 脈衝頻譜的變化

4.1.3 脈衝形狀和初始啁啾的影響 4.1.4 部分相干效應 4.2 群速度色散的影響 4.2.1 脈衝演化 4.2.2 展寬因數 4.2.3 光波分裂 4.2.4 實驗結果 4.2.5 三階色散效應 4.2.6 光纖放大器中的自相位元調製效應 4.3 半解析方法 4.3.1 矩方法 4.3.2 變分法 4.3.3 具體解析解 4.4 高階非線性效應 4.4.1 自變陡效應 4.4.2 群速度色散對光波衝擊的影響 4.4.3 脈衝內喇曼散射 習題 參考文獻 第5章 光孤子 5.1 調製不穩定性 5.1.1 線性穩定性分析 5.1.2 增益譜 5.1.3 實驗結果 5.1.4 超短脈衝產生

5.1.5 調製不穩定性對光波系統的影響 5.2 光孤子 5.2.1 逆散射法 5.2.2 基階孤子 5.2.3 二階和高階孤子 5.2.4 實驗驗證 5.2.5 孤子穩定性 5.3 其他類型的孤子 5.3.1 暗孤子 5.3.2 雙穩孤子 5.3.3 色散管理孤子 5.3.4 光相似子 5.4 孤子微擾 5.4.1 微擾法 5.4.2 光纖損耗 5.4.3 孤子放大 5.4.4 孤子互作用 5.5 高階效應 5.5.1 脈衝參量的矩方程 5.5.2 三階色散 5.5.3 自變陡效應 5.5.4 脈衝內喇曼散射 5.5.5 飛秒脈衝的傳輸 習題 參考文獻 第6章 偏振效應 6.1 非線性雙

折射 6.1.1 非線性雙折射的起源 6.1.2 耦合模方程 6.1.3 橢圓雙折射光纖 6.2 非線性相移 6.2.1 無色散交叉相位調製 6.2.2 光克爾效應 6.2.3 脈衝整形 6.3 偏振態的演化 6.3.1 解析解 6.3.2 邦加球標記法 6.3.3 偏振不穩定性 6.3.4 偏振混沌 6.4 向量調製不穩定性 6.4.1 低雙折射光纖 6.4.2 高雙折射光纖 6.4.3 各向同性光纖 6.4.4 實驗結果 6.5 雙折射和孤子 6.5.1 低雙折射光纖 6.5.2 高雙折射光纖 6.5.3 孤子牽引邏輯門 6.5.4 向量孤子 6.6 隨機雙折射 6.6.1 偏振模色散 6

.6.2 非線性薛定諤方程的向量形式 6.6.3 偏振模色散對孤子的影響 習題 參考文獻 第7章 交叉相位調製 7.1 交叉相位調製感應的非線性耦合 7.1.1 非線性折射率 7.1.2 耦合非線性薛定諤方程 7.2 交叉相位調製感應的調製不穩定性 7.2.1 線性穩定性分析 7.2.2 實驗結果 7.3 交叉相位調製配對孤子 7.3.1 亮-暗孤子對 7.3.2 亮-灰孤子對 7.3.3 週期解 7.3.4 多耦合非線性薛定諤方程 7.4 頻域和時域效應 7.4.1 非對稱頻譜展寬 7.4.2 非對稱時域變化 7.4.3 高階非線性效應 7.5 交叉相位調製的應用 7.5.1 交叉相位調製

感應的脈衝壓縮 7.5.2 交叉相位調製感應的光開關 7.5.3 交叉相位調製感應的非互易性 7.6 偏振效應 7.6.1 交叉相位調製的向量理論 7.6.2 偏振演化 7.6.3 偏振相關頻譜展寬 7.6.4 脈衝捕獲和壓縮 7.6.5 交叉相位調製感應光波分裂 7.7 雙折射光纖中的交叉相位調製效應 7.7.1 低雙折射光纖 7.7.2 高雙折射光纖 習題 參考文獻 第8章 受激喇曼散射 8.1 基本概念 8.1.1 喇曼增益譜 8.1.2 喇曼閾值 8.1.3 耦合振幅方程 8.1.4 四波混頻效應 8.2 准連續受激喇曼散射 8.2.1 單通喇曼產生 8.2.2 光纖喇曼雷射器 8.

2.3 光纖喇曼放大器 8.2.4 喇曼串擾 8.3 短泵浦脈衝的受激喇曼散射 8.3.1 脈衝傳輸方程 8.3.2 無色散情形 8.3.3 群速度色散效應 8.3.4 喇曼感應折射率變化 8.3.5 實驗結果 8.3.6 同步泵浦光纖喇曼雷射器 8.3.7 短脈衝喇曼放大 8.4 孤子效應 8.4.1 喇曼孤子 8.4.2 光纖喇曼孤子雷射器 8.4.3 孤子效應脈衝壓縮 8.5 偏振效應 8.5.1 喇曼放大的向量理論 8.5.2 偏振模色散效應對喇曼放大的影響 習題 參考文獻 第9章 受激布裡淵散射 9.1 基本概念 9.1.1 受激布裡淵散射的物理過程 9.1.2 布裡淵增益譜 9.

2 准連續受激布裡淵散射 9.2.1 布裡淵閾值 9.2.2 偏振效應 9.2.3 控制受激布裡淵散射閾值的方法 9.2.4 實驗結果 9.3 光纖布裡淵放大器 9.3.1 增益飽和 9.3.2 放大器設計和應用 9.4 受激布裡淵散射動力學 9.4.1 耦合振幅方程 9.4.2 利用Q開關脈衝的受激布裡淵散射 9.4.3 受激布裡淵散射感應的折射率變化 9.4.4 弛豫振盪 9.4.5 調製不穩定性和混沌 9.5 光纖布裡淵雷射器 9.5.1 連續運轉方式 9.5.2 脈衝運轉方式 習題 參考文獻 第10章 四波混頻 10.1 四波混頻的起源 10.2 四波混頻理論 10.2.1 耦合振幅

方程 10.2.2 耦合振幅方程的近似解 10.2.3 相位匹配效應 10.2.4 超快四波混頻過程 10.3 相位匹配技術 10.3.1 物理機制 10.3.2 多模光纖中的相位匹配 10.3.3 單模光纖中的相位匹配 10.3.4 雙折射光纖中的相位匹配 10.4 參量放大 10.4.1 早期工作的回顧 10.4.2 光纖參量放大器的增益譜和頻寬 10.4.3 單泵浦結構 10.4.4 雙泵浦結構 10.4.5 泵浦消耗效應 10.5 偏振效應 10.5.1 四波混頻的向量理論 10.5.2 參量增益的偏振相關性 10.5.3 線偏振和圓偏振泵浦 10.5.4 殘餘光纖雙折射效應 10.6

四波混頻的應用 10.6.1 參量振盪器 10.6.2 超快信號處理 10.6.3 量子關聯和雜訊壓縮 10.6.4 相敏放大 習題 參考文獻 第11章 高非線性光纖 11.1 非線性參量 11.1.1 n2的單位和數值 11.1.2 自相位元調製法 11.1.3 交叉相位調製法 11.1.4 四波混頻法 11.1.5 n2值的變化 11.2 石英包層光纖 11.3 空氣包層錐形光纖 11.4 微結構光纖 11.4.1 設計和製造 11.4.2 模式和色散特性 11.4.3 空芯光子晶體光纖 11.4.4 布拉格光纖 11.5 非石英光纖 11.5.1 矽酸鉛光纖 11.5.2 硫化物光纖

11.5.3 氧化鉍光纖 11.6 脈衝在細芯光纖中的傳輸 11.6.1 向量理論 11.6.2 頻率相關的模式分佈 習題 參考文獻 第12章 新型非線性現象 12.1 孤子分裂和色散波 12.1.1 二階和高階孤子的分裂 12.1.2 色散波產生 12.2 脈衝內喇曼散射 12.2.1 通過孤子分裂增強的喇曼感應頻移 12.2.2 互相關技術 12.2.3 通過喇曼感應頻移調諧波長 12.2.4 雙折射效應 12.2.5 喇曼感應頻移的抑制 12.2.6 零色散波長附近的孤子動力學 12.2.7 多峰喇曼孤子 12.3 四波混頻 12.3.1 四階色散的作用 12.3.2 光纖雙折射的作

用 12.3.3 參量放大器和波長變換器 12.3.4 可調諧光纖參量振盪器 12.4 二次諧波產生 12.4.1 物理機制 12.4.2 熱極化和准相位匹配 12.4.3 二次諧波產生理論 12.5 三次諧波產生 12.5.1 高非線性光纖中的三次諧波產生 12.5.2 群速度失配效應 12.5.3 光纖雙折射效應 習題 參考文獻 第13章 超連續譜產生 13.1 皮秒脈衝泵浦 13.1.1 非線性機制 13.1.2 2000年後的實驗進展 13.2 飛秒脈衝泵浦 13.2.1 微結構石英光纖 13.2.2 微結構非石英光纖 13.3 時域和頻域演化 13.3.1 超連續譜的數值模擬 13

.3.2 交叉相位調製的作用 13.3.3 交叉相位調製感應的捕獲 13.3.4 四波混頻的作用 13.4 連續(CW)或准連續(quasi-CW)光泵浦 13.4.1 非線性機制 13.4.2 實驗進展 13.5 偏振效應 13.5.1 雙折射微結構光纖 13.5.2 近各向同性光纖 13.5.3 各向同性光纖中的非線性偏振旋轉 13.6 超連續譜的相干性 13.6.1 頻域相干度 13.6.2 改善相干性的技術 13.6.3 頻譜非相干孤子 13.7 光學怪波 13.7.1 脈衝間起伏的L形統計 13.7.2 控制怪波統計的技術 13.7.3 再論調制不穩定性 習題 參考文獻 附錄A 單

位制 附錄B 非線性薛定諤方程的原始程式碼 附錄C 縮略語 中英文術語對照表

應用於矽光子光纖陀螺儀之氮化矽光柵耦合器與多模干涉波導交叉設計

為了解決光纖頻寬速度的問題,作者林穎璨 這樣論述:

本論文主要研究干涉式光纖陀螺儀中用於感測旋轉角速度的光纖線圈在光積體化時所面臨的耦合問題。光學陀螺儀是用於偵測旋轉角速度的常用裝置,傳統的干涉式光纖陀螺儀由光源、分光器、相位調變器、光纖線圈等數個分立式元件構成,為了微縮與整合光纖陀螺儀系統,近年來出現利用絕緣體覆矽(Silicon on insulator, SOI)平台製作的積體化光學陀螺儀,能夠將大部分的元件以矽光子技術微縮至單一晶片上。在光纖陀螺儀中,低損耗的光纖線圈對量測旋轉角速度的精確度和穩定性至關重要,然而,積體化光纖陀螺儀中作為感測線圈的矽螺旋波導由於具有較高的芯包層折射率差,因此波導側壁粗糙所導致的散射損耗會比光纖線圈大得多

,故本次研究我們選用折射率較低的氮化矽作為低損耗波導線圈材料,並設計波導交叉和光柵耦合器兩種元件,以解決感測線圈和單模波導之間的耦合問題。波導交叉元件部份,我們採用基於多模干涉(Multimode-interference, MMI)的交叉結構,波導層的厚度為300 nm。此設計利用多模干涉原理使光在準TE0與TE2之間轉換形成週期化圖形,配合放置在波導與MMI之間的過渡錐形降低模場直徑不匹配帶來的損耗,透過調整錐形結構與匹配MMI週期長度,能使光在通過波導交叉點時的繞射現象大幅減少。我們模擬了兩種不同的設計:單波導交叉與波導交叉陣列,模擬結果顯示單波導交叉穿透率為98.7 %,而波導交叉陣列

中平均單一交叉點損耗為99.6 %,等週期光柵耦合器部分經過結構優化,在淺蝕刻時具有49.2 %的理論耦合效率,全蝕刻時效率則為33.6 %。根據模擬結果顯示,基於多模干涉的波導交叉在損耗、頻寬和製程誤差容忍度方面優於光柵耦合器,因此我們選擇採取邊緣耦合方式,製作波導交叉結構將光從感測線圈中央引出。為了量測波導交叉元件的損耗並降低量測誤差,我們分別串接1~20個單波導交叉以及10~500個波導交叉陣列,利用光通過不同數量交叉產生的能量差異推算單個交叉點的損耗。量測結果顯示,單波導交叉損耗約為0.34 dB,而波導交叉陣列中每個交叉點平均損耗為0.025 dB,交叉串擾-61.9 dB,在152

5 nm~1611 nm的量測區間內單波導交叉穿透率差異小於0.48 dB。量測結果證明本論文設計之多模干涉波導交叉元件具有寬頻、低損耗、低串擾的優點,有望應用於矽光子干涉式光纖陀螺儀的感測線圈中。