Digi-Key hk的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

另外網站Digi-Key Electronics Asia Pacific, Kwai Tsing (葵青區)也說明:Digi -Key Electronics Asia Pacific Ltd. - Hong Kong. Digi-Key is one of the fastest growing distributors of electronic components in the world. Jobs at digi key ...

長庚大學 電機工程學系 魏一勤所指導 許哲瑋的 結合慣性感測與超寬頻無線室內定位系統之定位行為分析演算法研究設計 (2019),提出Digi-Key hk關鍵因素是什麼,來自於超寬頻、慣性感測單元、室內定位、情境行為。

而第二篇論文國立陽明大學 生物醫學資訊研究所 張博論、葉泳蘭所指導 蕭竹儀的 無人機協尋走失失智老人之可行性評估 (2019),提出因為有 無人機、失智老人、行為模式、漫遊走失、3D地理資訊的重點而找出了 Digi-Key hk的解答。

最後網站korean distributor - YOGAON則補充:... Digi-Key offers millions of products from thousands of manufacturers, ... 2019 Korean distributor Samasound raised a lot of interest with HK Audio ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Digi-Key hk,大家也想知道這些:

結合慣性感測與超寬頻無線室內定位系統之定位行為分析演算法研究設計

為了解決Digi-Key hk的問題,作者許哲瑋 這樣論述:

目  錄指導教授推薦書口試委員審定書致 謝 iii摘 要 ivAbstract v目  錄 vi圖 目 錄 ix表 目 錄 xiii第一章 緒論 11.1 研究動機與背景 11.2 研究目的 3第二章 現有定位技術介紹 72.1 室外定位技術介紹 72.1.1 衛星定位系統 72.1.2 基地台定位 92.2 室內定位觀測量介紹 102.3 室內定位技術介紹 132.3.1 藍芽(Bluetooth)室內定位技術 132.3.2 紅外線(Infrared)室內定位技術 142.3

.3 超聲波(Ultrasound)室內定位技術 152.3.4 無線射頻識別RFID室內定位技術 152.3.5 Wi-Fi室內定位技術 162.3.6 ZigBee室內定位技術 162.3.7 UWB超寬頻(Ultra-wideband)室內定位技術 172.4 情境行為與室內定位技術混搭 18第三章 實驗架構 213.1 硬體與系統架構 213.1.1 超寬頻UWB (Ultra-wideband)硬體架構 213.1.2 IMU(inertial measurement unit)裝置 243.1.3 慣性感測與超寬頻無線室內

定位結合系統 253.1.4 UWB與IMU感測器安裝位置 253.2 UWB結合IMU提升定位精準度方法 263.3 情境行為分析方法 293.3.1 UWB數據分析判斷情境行為方法 313.3.2 IMU數據分析判斷情境行為方法 333.3.3 IMU與UWB情境行為分析比較 36第四章 實驗結果與討論 384.1 定位精準度提升實驗結果分析 384.2 情境行為實驗結果分析 434.2.1 情境行為特徵軸分析實驗結果 434.2.2 情境行為之常見模型預測演算法分析結果 504.2.3 混合情境分析

結果 604.2.4 本研究與其他文獻情境行為比較 62第五章 結論 66參考文獻 67圖 目 錄圖1.1 [11]常見室內定位優劣比較表 4圖2.1 [16]隨著地球自轉所接收到不同的衛星定位數量 8圖2.2 [17]基地台三點定位原理示意圖 9圖2.3 [18]TDOA 定位示意圖 11圖2.4 [19]AOA發射端與接收端角度 12圖2.5 [20]TOF測距原理 13圖2.6 [21]藍芽室內定位 14圖2.7 [22]發射器和接收器織紅外線網覆蓋待測空間 15圖2.8 [23]Wi-Fi巨量數據資料庫

16圖2.9 [24]ZigBee室內定位 17圖2.10 [25]GPS衛星定位原理與UWB室內定位方式 18圖3.1 Coordinator 21圖3.2 Anchor 22圖3.3 Tag 22圖3.4 Anchor相對測距流程 23圖3.5 Tag測距與定位流程 23圖3.6 硬體運作架構 24圖3.7 IMU加速度與角速度方向示意圖 24圖3.8 系統架構流程圖 25圖3.9 安裝於腰前為IMU最理想位置 26圖3.10 IMU補償UWB所得座標UI2 27圖3.11 情境分析方法示意圖 29圖3.1

2 行為分析方法示意圖 30圖3.13 行為分析研究構想圖 30圖3.14 向前走,倒退走UWB_X軸量測波型 31圖3.15 向前走,倒退走UWB_Y軸量測波型 32圖3.16 向前走,倒退走UWB_Z軸量測波型 32圖3.17 向前走,倒退走UWB三軸波型疊圖 33圖3.18 向前走情境,加速度軸特徵波形 34圖3.19 向前走情境,角速度軸特徵波形 34圖3.20 向前走情境,加速度與角速度特徵比較表 35圖3.21 向前走UWB_Y軸量測數據波型 37圖3.22 向前走IMU_Y軸加速度量測數據波型 37圖4.1 各組U

WB平均誤差與資料筆數 39圖4.2 UWB_3與各組IMU補償之平均誤差 40圖4.3 UWB_4與各組IMU補償之平均誤差 40圖4.4 UWB_5與各組IMU補償之平均誤差 41圖4.5 UWB_3誤差與 IMU補償後誤差比較 42圖4.6 UWB_4誤差與 IMU補償後誤差比較 42圖4.7 UWB_5誤差與 IMU補償後誤差比較 43圖4.8 向前走情境,加速度y軸特徵 44圖4.9 倒退走情境,加速度y軸特徵 45圖4.10 上樓梯情境,加速度y軸特徵 & 細部圖 45圖4.11 下樓梯情境,加速度y軸特徵 & 細部圖

46圖4.12 用力跳躍情境,角速度x、加速度y 47圖4.13 輕輕跳躍情境,角速度x軸特徵 48圖4.14 輕輕跳躍情境,加速度y軸特徵 48圖4.15 擦白板情境,角速度z軸特徵 49圖4.16 蹲下右手檢東西情境,角速度x軸特徵 50圖4.17 [40]SVC線性不可分映射成高緯空間線性可分的樣本 51圖4.18 [41]Logistic Regression 最擬合的S函數曲線作為分類 51圖4.19 [43]Random Forest決策樹 52圖4.20 [44]LGBM Classifier 的Leaf-wise決策樹生長策略

53圖4.21 演算法分析流程 54圖4.22 使用SVC分析8種情境行為 57圖4.23 使用Logistic Regression分析8種情境行為 58圖4.24 使用Random Forest分析8種情境行為 58圖4.25 使用XGB Classifier分析8種情境行為 59圖4.26 使用LGMB Classifier分析8種情境行為 59圖4.27 三種情境行為混搭波型資訊 61圖4.28 三種情境行為混搭波型資訊 61圖4.29 使用LGBM Classifier分析13種情境行為 64 表 目 錄表2.1 [2

6]常見室內定位技術綜合比較 18表3.1 IMU情境行為特徵軸 36表4.1 機器學習五種演算法比較 57表4.2 混合情境分析結果 62表4.3本研究與其他文獻比較表 65

無人機協尋走失失智老人之可行性評估

為了解決Digi-Key hk的問題,作者蕭竹儀 這樣論述:

台灣人口結構高齡化的結果,使得失智老人人數,在逐年減少的全國失蹤人口中,佔比反而屢破新高;失智走失生死攸關,必須在24小時黃金時期內積極尋回。台灣地形複雜、資源的城鄉差距大,使得偏鄉警消單位警務負擔重。無人機協尋雖已漸普及,但台灣地小人稠,地形複雜,空域狹小,法規限制嚴格,無人機的發揮空間受限。本研究旨在探討,於前述條件下,對於高齡失智走失者如何利用無人機介入搜尋,以減輕搜救者之負擔。本論文是第一篇利用GIS的方法,將飛行紀錄3D視覺化,用以評估無人機協尋之可行性;選擇同時有60公尺限高區經過的關渡平原及陽明校園山坡地兩處對照飛行、模擬走失情境以評估無人機相對於純人力之搜尋效益。經兩地飛行比

較試驗,由套疊於Google Earth上之飛航路線警訊可知,在如陽明大學校園之類的建物密集都會區及複雜地形,若以Wi-Fi單機操控之消費型空拍機飛行,圖傳抗干擾能力較弱、訊號傳輸距離有限、收發容易受遮蔽、干擾;且受60公尺飛行高度之限制,大部份校園均不能高飛,因而無法避開傳訊障礙,不利任務執行及飛安控管;對於監視器密佈的都會區,無人機協尋不易發揮功效;從另一實驗,以無人機與機車騎士在關渡平原比較搜尋後,無人機以平均10秒的時間差距略優於機車搜尋,但此差距不能確保整體尋人任務之完成;此外,亦觀察到無人機於空對地搜尋的效益在:跨越地理限制,截彎取直,有利於跳脫地面搜救者的慣性思維或擴大視野及取得

良好視角,加快定位到走失者。本論文依據實驗觀察結果,再從廣泛文獻中綜整走失失智老人之行為模式以及專業的野外搜救策略,納入不同等級的無人機運用方式之討論,將有助於未來5G普及推升無人機各項軟硬體技術層級後,無人機應用策略之擬定。