不限速不降速差別的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

不限速不降速差別的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦葉克飛寫的 德國製造的細節: 人口八千萬的國家,竟有兩千多個世界級品牌和一千多個世界隱形冠軍,德國人做事的竅門在哪? 可以從中找到所需的評價。

另外網站玄門周天功法 - Google 圖書結果也說明:就像在高速公路上,以110的速度行車,沒有阻塞,沒有壓迫,不需換道,不需超車。在不限速的高速公路上,想飆到160,甚至200,也沒有問題。沒有警察,沒有測速照相的那種全然自在 ...

東海大學 化學工程與材料工程學系 顏宏偉所指導 李芳慈的 探討不同發酵策略對於Klebsiella sp. Ana-WS5生產1,3-丙二醇與2,3-丁二醇之影響 (2013),提出不限速不降速差別關鍵因素是什麼,來自於2,3-丁二醇、1,3-丙二醇、乳酸、pH、溶氧量。

而第二篇論文淡江大學 公共行政學系公共政策碩士班 陳恆鈞所指導 張喬怡的 高速公路電子收費系統政策之變遷:演化觀點 (2006),提出因為有 政策變遷、高速公路電子收費系統、個人、利益、機構、理念的重點而找出了 不限速不降速差別的解答。

最後網站即時新聞澄清 - 國家通訊傳播委員會則補充:NCC表示,本次抽樣之各上網吃到飽方案(包括499方案),業者對外揭露資費訊息均屬「未限速」方案,各業者對申辦不同方案之用戶提供上網服務之條件不應有差異;前揭行政調查 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了不限速不降速差別,大家也想知道這些:

德國製造的細節: 人口八千萬的國家,竟有兩千多個世界級品牌和一千多個世界隱形冠軍,德國人做事的竅門在哪?

為了解決不限速不降速差別的問題,作者葉克飛 這樣論述:

  提到德國,你一定知道:   .賓士、BMW、保時捷、愛迪達、RIMOWA行李箱、朗格錶……都是德國品牌;   .哲學家尼采、詩人歌德、音樂家貝多芬和巴哈都出生於德國;   .格林童話故事的故鄉(發源地)在這裡;   .足球隊曾奪得4次世界盃冠軍;   .德國啤酒好喝、豬腳美味、香腸種類超過1500種、做黑森林蛋糕得依照國家標準……       但你很可能不知道:在英國、法國完成工業革命時,德國還是個農業國,   現在享譽世界的「德國製造」(Made in Germany)   曾是帶有侮辱性的符號,   是什麼原因翻轉了「德國製造」?   資深媒體人、歐洲深度研究者

葉克飛,   多年來走訪德國數次,找到了德國人嚴謹做事卻從不加班的竅門。     ◎對工業的敬畏,成就了德國製造   在德國,組裝一輛保時捷只需9小時,但檢測和測試需5天,出廠則要幾個月;   朗格的鐘錶師至少須學3到7年才可參與製作,每個錶的製作時間最少6個月;   德國刀具的工序起碼四十多道;製作一個行李箱需用兩百多個零件;   就連個小香腸、黑森林蛋糕,也有嚴格的標準和生產流程。     這就是聞名世界的「工匠精神」。怎麼辦到?   多數德國企業不貸款、不上市,專注於技術,   所以這裡有兩千多個世界級品牌和一千多個世界隱形冠軍   世界上有四個頂級的櫥櫃品牌,全部出自德國,   連

英國女王的廚房也只用德國品牌。     ◎不爭一流,卻成為真正一流的人才培養     德國的哲學和科學如此發達,與古老而穩定的大學體系密不可分,   這裡的教育是免費的,對於外國留學生也一樣,   但他們寬進嚴出,申請學校很容易,畢業卻很難。     這裡很少綜合性院校,多數都是應用科學大學,   所以在世界排名上相對吃虧,   但也讓德國理工科大學,成為科技業的長春藤。   一個人口八千萬的國家,   竟有兩千多個世界級品牌和一千多個世界隱形冠軍,   從來不應酬、每天一定準時下班回家吃晚餐的德國人,怎麼辦到? 名人推薦   創新管理實戰研究中心執行長/劉恭甫   影響力學院創辦人/丁

菱娟  

不限速不降速差別進入發燒排行的影片

新頻道成立!歡迎訂閱及加入:
【游泳私房話】YouTube:http://bit.ly/swimmer_privatetalk
【游泳私房話】FB社團:http://bit.ly/FBswimmer_privatetalk
----------
◉ 訂購 剛剛好水餃:https://shopee.tw/privatetalk

【遊記】江蘇:侵華日軍南京大屠殺遇難同胞紀念館http://bit.ly/2KGGENQ

先說明一下,這篇不算是試駕心得,因為本來也不會有這篇文章出現的,只是我在整理上個月的旅遊照片時,突然發現了這張Luxgen U6 Turbo Eco Hyper的車屁股照,想想...跟大家提一下那幾天納智捷陪伴我美好行程的經驗吧。而這張屁股照,純粹是我開去電影院的地下停車場,怕忘記車牌號碼以致於無法繳停車費時,所事先拍下的記憶照;沒想到現在變成這趟旅程中,唯一的一張車照啦。

先前去大陸旅遊時,大致上我老婆的哥哥都會借車給我自駕,那部車之前我也分享過了,就是VW Lavida,在大陸叫「大眾朗行」。
https://youtu.be/6RIIgImD20c

不過今年回去,老婆跟堂弟借了輛不一樣卻又十分熟悉的車子來自駕,就是台灣的自主品牌-納智捷U6。

說起U6,真的,我不用再介紹,大家都已經太熟悉了,所以這裡就來說說大陸車主的使用心得吧~(對,就是我老婆的堂弟)

其實我老婆的家族裡,納智捷的車主就有三位,算是車主密度蠻高的家族。包括這部U6,她堂姐們的家裡還有兩部大七(對啦,就是U7)。

前兩年陪老婆回老家前,我就曉得她們家裡有人買了納智捷,記得當初她堂姐買U7大概花了約25萬人民幣,說真的並不便宜。但,他們當時的想法就是-「台灣的品牌應該沒問題,而且這麼大台扮相很好,開出去體面。」所以就買了~結果後來就是因為妥善率不佳的問題,讓他們相當苦惱。於是在我陪老婆到堂姐家串門子之前,就事先叮嚀她:「誒,等下拜託別提車子的事情,有問題找車廠,別牽拖到我身上喔~」

可惜天不從人願,一進堂姐家、她自己就問我說:
「這車怎麼常常要跑修理廠?」
「好吃油啊。」
「平時都不大敢開了...」
我只有尷尬地笑笑混過去。

好啦,我們先跳過堂姐這關,畢竟前兩年我沒打算跟她們聊車子的事,她們也不太清楚我是做哪行的,所以她們也只是抱著「台灣車有問題,問問台灣人他可能比較知道」的想法來問我罷了。

不過,今年堂弟這關我就過不了了~

堂弟借車給我們還親自「送車上門」,真的好熱情,弄得我怪不好意思的。然後,他跟我介紹了一下車況,表示「車子上路難免碰一下、擦一下什麼的,外殼碰凹了一點,這些都沒關係,叫我開車不要有壓力,別介意,不是什麼貴重的車子...」

接著我們就上車,然後重頭戲就來了。他說:「我有看你的視頻耶~」......

我心頭一驚,這次應該混不過去了,果然,他下一句話就是跟車子的小毛病有關:「我這車的後視鏡等下你開的時候,要麻煩你自己調一下角度。」原來他車子的電動後視鏡開關已經壞了,按下去是沒反應的~然後,他就開始告訴我對這部車的想法。

他說,其實大陸很多人都對「合資車」(就類似我們這邊除了納智捷以外的那些國產車)比較有好感,就算是跟一輛「價格比較便宜、配備比較豐富、甚至性能還好一點大陸自有品牌」相較,他們還是有很多人願意花多一點錢來買合資車,因為感覺比較體面、比較洋氣。

他當時買這部U6的時候,全部辦到好接近17萬人民幣;而就我觀察,他當初應該買的是入門版,因為車上什麼Think+系統都沒有,而他也表示當初就是衝著台灣品牌應該比較高端大氣上檔次而來的,所以就入手了。

不過,他說開了差不多三年,雖然有些小毛病,但他覺得這些都還不算是什麼問題,比較讓他頭大的地方,就是「油耗很差」!他說:「這車真的很吃油!」

我老婆很直接,聽到這裡,就直接告訴他堂弟:
「趕快把車賣一賣啦!」
「現在還沒辦法賣。賣不了幾個錢,換不了車。」
「以後賣、錢更少!」
「那也沒辦法,現在就是得用車的時候。」

嗯,好吧,這個心態很實際,買到不滿意的車卻不換,當然就是錢不夠的問題啦;換成我也不例外。

因為我還要靠他的車子旅遊,所以接下來也陪著他罵了幾句、讓他心情好過些,不過這裡我就不原音重現了。等他開到捷運站、跟我換手之後(他自己坐車回家),我才又發現,原來駕駛座電動窗也是故障的,有時降下不去、有時又升不太上來。

後來這部車我開了好幾天,它除了上面說的那兩個故障點外,其實還真的沒什麼毛病,好幾年的車,底盤大概還有7成以上的紮實度,這在大陸來說,我覺得很不錯了~因為我老婆娘家這邊(武漢),有很多地方的道路狀況都很糟,對懸吊系統來說是傷害很大的。

至於油耗的部分,沒錯,1.8T的引擎跟1.6 NA的朗行比起來,真的太耗油了!而就算不跟1.6 NA引擎來比,這具1.8T引擎,每公升大概也只能跑個10公里多而已;其中我很多時候還都是高速公路~就我自己的體感來說,這部車跟我以前1994年的福特天王星(2.0 NA)差不多,不算省油~

最後,經過這次開U6在大陸長途旅遊之後,我總結了納智捷在大陸越賣越差的最大的原因,應該是這具引擎根本不適合在「大陸」行駛。

在台灣的駕駛朋友們,如果沒有在大陸開過車,很可能無法體會我所說的原因,為什麼不適合在大陸行駛?因為大陸的街道上,「舉發違規的監控攝影機實在太多了」!

在台灣,我們馬路上抓違規的照相機真的不算多,而且,很多時候違規照相機只能針對某一種違規狀況才能觸發拍照。但大陸不同!他們的是攝影機、照相機都有,而針對各種違規狀況,它們的系統幾乎都有辦法舉發;然後,這種相機在市區內大概一、兩百公尺一支。所以你如果去大陸自駕時,在市區道路上你就會發現:

【為什麼大家都開那麼慢?為什麼台灣人去大陸開車都顯得特別機靈?】

其實真的不是他們比較不會開車,而是我們沒搞清楚當地的交通特性。例如去年我開車自駕,在武漢短短一週內就吃上了兩張罰單,總共被扣6點~(12點吊銷駕照)

實線變換車道➡︎因為要閃路邊冒出來的三輪車,所以壓了實線被舉發。
超速➡︎限速30公里的路橋上,開40公里就被超速舉發了(其實我還覺得我已經開很慢了)。
而拍我的都不是照相機,而是攝影機截圖舉證!

所以後來一個多星期,我都開得非常慢,其實就是完全依照速限,而且不存僥倖心理,然後才不再吃罰單。今年我也比照辦理,所以市區裡慢慢開、慢慢開之下(市區限速大部分都在50公里而已,而很多陸橋的限速都是30公里。),我發現U6根本就是長時間處於「2、3檔」之間的變換,這樣能省油嗎?

以U6的引擎系統來說,省油本來就不是它的強項了,再加上長時間在市區中低速行駛......這樣子的行車模式,納智捷的車子一定非常不討喜。然而,大陸的油價並沒有比台灣便宜,相對地,他們的所得收入目前還比台灣低一些,所以這個油耗表現,一定會讓車主很感冒的。再加上一些電系小問題三不五時蹦出來煩人,幾年下來,真的會把口碑給玩完的。

話說如此,其實這次旅遊一路上如果沒有U6相伴,我還真的挺麻煩的(因為沒租到車),而油耗的部分也沒干擾到我的心情,反正旅遊就是帶足盤纏去花的嘛,哪在乎這點油耗~

跟之前的VW Lavida相比,U6空間寬敞、座椅舒適,尤其加速感飽滿,這些都是大大的優點;但小舅子的Lavida一樣開了差不多三年,至少裡面什麼東西都沒壞,這就是兩者差別的地方了。

◉ 訂購 剛剛好水餃:https://shopee.tw/privatetalk

網站:http://www.autoprivatetalk.com
FB:https://www.facebook.com/harry.liaokang
社團:https://www.facebook.com/groups/autoprivatetalk
主講人/剪輯後製/企劃:廖剛
註:不會有字幕(我手邊沒有人力)(但你有興趣也可以幫我上字幕)、不要用粗話罵人~

#Luxgen_U6 #VW_Lavida #大陸自駕旅遊

探討不同發酵策略對於Klebsiella sp. Ana-WS5生產1,3-丙二醇與2,3-丁二醇之影響

為了解決不限速不降速差別的問題,作者李芳慈 這樣論述:

探討不同發酵策略對於Klebsiella sp. Ana-WS5生產1,3-丙二醇與2,3-丁二醇之影響研究生:李芳慈指導老師:顏宏偉摘要--本研究為探討利用不同碳源培養Klebsiella sp. Ana-WS5以同時生產2,3-丁二醇(BDO)和1,3-丙二醇(PDO),並嘗試利用不同發酵控制增加BDO與PDO之生產濃度。根據搖瓶批次實驗的結果發現,以甘油 (70 g/L)為單一碳源生產BDO (21.7 g/L)與PDO (10.3 g/L)的效果較佳;以粗甘油 (70 g/L)為單一碳源時,會使菌體濃度下降 (2.2 g/L),但其培養基經發酵後pH均能維持高於5.0,有助於PDO合

成 (14.9 g/L);而以相同濃度的混合碳源 (甘油與葡萄糖,濃度分別為50 g/L、20 g/L)反而會導致BDO (5.9 g/L)與PDO (2.1 g/L)產物濃度下降;先前的文獻指出,培養基中添加醋酸有助於BDO的生產;本實驗研究結果發現添加乳酸具有類似醋酸添加的效果,亦可以提升同時生產的BDO與PDO,並且添加10 g/L的乳酸能有效地提升30 %的Total Diols產量 (30.8 g/L至39.4 g/L)。包埋法固定化細胞培養,凝膠球粒徑較小 (1.3 mm)有助產物的生產;不同凝膠球顆粒數因為pH過低的影響,無明顯的差別;重複批次實驗可以有效的重複三次,BDO和PD

O均能維持約20 g/L、11 g/L;連續式放大培養BDO、PDO生產速率分別是0.27 g/Lh、0.20 g/Lh,產率分別為0.29 g/g、0.54 g/g。細胞固定化對產物的生產沒有特別的提升效果,但有利進行重複批次實驗。不同溶氧量對菌體生長及BDO與PDO生產也有不同影響,高溶氧批次發酵,有助於菌體生長 (2.8 g/L)、提高BDO的濃度 (30.1 g/L)、生產速率 (0.42 g/Lh)、產率 (0.43 g/g);低溶氧批次發酵反而有利於PDO的生產,提升PDO濃度 (17.2 g/L)、生產速率 (0.13 g/Lh)、產率 (0.59 g/g)。固定pH 7.0的策

略,能單獨提升PDO的最大濃度 (25.0 g/L)、生產速率 (0.33 g/Lh)約為控制組 (無pH調整)兩倍之多;雖然在探討固定時間間距調整pH (12 hr、24 hr)之批次策略無法有效提升BDO及PDO之最大濃度,但相對於控制組生產速率方面卻有大幅度的增加,BDO (0.21 g/Lh)、PDO (0.42 g/Lh);固定時間間距調整pH (24 hr)之間隔式饋料批次策略皆在Total Diols的最大濃度 (74.3 g/L)、反應速率 (0.83 g/Lh)有相當的提升,連續式饋料能改善間隔式饋料產物延遲生產的問題,但對產物的生產沒有明顯的影響。氣舉式發酵槽具有較好的溶氧

速率且無機械攪拌葉片之剪切力的產生,相對於攪拌式發酵槽,有利於菌體的生長 (3.0 g/L)與BDO (22.2 g/L)的生產。總結,本次研究結果顯示,以Klebsiella sp. Ana-WS5 生產BDO和PDO對於發酵液中溶氧量、pH的變化、發酵槽型式是相當敏感的,細胞固定化培養則有利於重複批次實驗。此外,乳酸添加、溶氧的改變、固定時間間隔調整pH之饋料批次實驗皆是簡單又有效的方式作為提高BDO和PDO生產的發酵策略。關鍵字:2,3-丁二醇、1,3-丙二醇、乳酸、pH、溶氧量一、緒論1-1 前言當今石化能源涵蓋了生活中的食衣住行,石化能源與現代人類生活已密不可分。人口的急速增加、工業

科技的快速發展導致對石化能源的需求量高度成長。國際能源情勢方面,於二十一世紀中石油、天然氣、煤炭等石化燃料即將枯竭,但人類的需求量仍然持續增加,因此價格也不斷攀升。而高度依賴石化能源,對地球環境也帶來極大影響,例如溫室效應、全球暖化、海平面上升等,因此開發替代再生能源將成為全球關注的議題之一。全球石化燃料的日益短缺、價格飆漲,受限於此天然資源的問題,非石化原料來源的綠色化學品,將是未來重要的化學品來源。因此利用微生物發酵法生產化學品已逐漸引起關注。1-2 研究動機本研究所使用的菌株Klebsiella sp. Ana-WS5為能同時生產2,3-丁二醇(BDO)和1,3-丙二醇(PDO),故利用

不同的碳源與不同的發酵策略對於產物BDO與PDO的分布進行一連串的研究,所使用的發酵策略有(1)溶氧、(2)固定pH、(3)固定時間間距調整pH。另外,文獻指出於培養基中添加醋酸、乙醇能有效提升產物產量,本研究則為添加亦為副產物的乳酸,以觀察其對產物的影響。為了有效地重複使用微生物細胞,利用載體為海藻酸鈉之包埋法進行細胞固定化,並探討不同固定化條件對於產物生產的影響。二、文獻回顧2-1 BDO介紹BDO的開發起始於1906年,由Harden和Walpole首次利用微生物轉換法以Klebsiella pneumonia生產 (Harden and Walpole, 1906)。如今石化燃料的短

缺,石油價格不斷的上升,以微生物發酵法生產BDO再次受到重視。BDO,C4H10O2,分子量90.12,無色結晶固體或黏稠液體,溶點23~27 ℃,沸點179~182 ℃,密度為1.05 g/cm3,燃燒值為27198 J/g,能溶於水、醇和醚類。BDO應用相當廣泛,應用範圍有燃料、化工、食品、燃料、醫學、交通等多種領域中。例如BDO具有高燃燒值,是一種極具價值的液體燃料可以作為航空燃料;具有較低凝固點的特性可用作抗凍劑。另外,也可以應用於化妝品、香水、藥物載體、染料、印刷油墨、炸藥等 (Garg and Jain, 1995;Syu, 2001)。目前的生產BDO主要分為兩種方法,一是化學合

成法,但化學合成法有其缺點為必須在高溫高壓高單價觸媒的環境下進行合成,成本較高,又因BDO結較為複雜,相對的困難度也會提升。而用微生物發酵法來生產BDO,其優點為操作會比較簡單,且可以利用工業廢料當成營養源,成本也會降低,亦符合現在所提倡的綠色化工,所以微生物發酵法是現在生產BDO較受歡迎的方法 (Wong et al., 2012)。2-2 PDO介紹 PDO是已知最古老的發酵產物之一,它早在1881年由August Freund以Clostridium pasteurianum加入含有甘油的混合培養基發酵生產而得的中間體化合物,一種可直接利用微生物轉化合成之非石化來源之綠色化學品 (B

iebl et al., 1998;Reimann et al., 1998)。PDO,分子式C3H8O2,分子量76.09 ,無色或淡黃色的黏稠液體,略有刺激的味道,溶點-32 ℃,沸點214 ℃,密度為1.053 g/cm3,與水、乙醇、丙酮等多種溶劑互溶。PDO具有良好生物降解性,且不具毒性,是一種重要化工和醫藥中間體原料,可廣泛應用於多種不同產業領域,如高分子、化妝品、食品與醫藥等產業。同時PDO,更是合成新型聚酯—聚對苯二甲酸丙二酯(PTT)的主要單體之一,如圖2-3,PTT具有許多獨特的性質,因此受到國際的廣泛重視 (Biebl et al., 1999;Kurian, 2005)

。生產PDO目前有兩種方法,分別為化學合成法和微生物發酵法。化學合成法,缺點是副產物多、選擇性差、操作條件需高溫高壓、所利用的化學原料均為不可再生的石油或煤碳資源;而微生物發酵法,選擇性高、操作條件溫和、原料可用再生的農產品或工業廢料粗甘油等符合可持續發展的需求,所以越來越受重視。2-3 BDO與PDO代謝路徑圖一為微生物發酵的代謝路徑圖。由圖可發現以甘油為碳源時,代謝產物包含PDO、BDO、乙醇、醋酸、乳酸、琥珀酸,其中PDO通常是甘油發酵的主要產物。研究指出,利用Klebsiella sp.進行甘油發酵的期間,隨著pH減少醋酸的形成會被BDO形成所取代,使得BDO也成為較為主要的產物之一

。圖2-1 產物代謝路徑圖2-4 細胞固定化介紹微生物固定化技術使利用物理或化學程序將微生物定位於特定空間區域中,並使其保持活性,可維持較高的菌體濃度及加快生產速度 (Idris et al., 2006)。具有反應速度快、不易受汙染、產物分離容易、穩定性高、可重複利用等優點。依照固定載體和作用方式不同可分為五種類型:吸附法、交聯法、包埋法、包覆法、共價鍵結法。微生物最常用的方法為包埋法,是將微生物置於天然高分子多醣類或高分子凝膠中,使微生物固定化。其優點有成型方便、對細胞活性影響小、可以製作成各種形狀等 (Sun, 1998)。載體材料的選擇對微生物固定化發酵也是非常重要的因素,理想的固定

化載體應該為穩定性高、對微生物無毒性、質傳性能良好、不易被微生物分解、機械強度高、使用壽命長、價格低廉等。目前,微生物發酵最常使用的固定化包埋法使用的載體材料有瓊脂、海藻酸鈉、聚乙烯醇、聚丙烯醯氨、聚乙烯乙二醇、具丙烯酸等凝膠。其中,海藻酸鈉是由褐藻提取的多醣,故其價格低廉、生物相容性良好且固化、成型方便,是目前使用最廣、研究最多的固定化載體。2-5 影響BDO、PDO產量因素(1) 溶氧量發酵液中的溶氧濃度對微生物的生長和產物BDO、PDO的形成有著重要的影響。在發酵過程中,菌體必須要有適當的無菌空氣才能繁殖和累積代謝物,不同菌種生長、不同代謝路徑所需要的溶氧量都是不相同的,所以研究反應

器內溶氧量對發酵的影響及對代謝產物生產效率、產量是非常重要(Zhang et al., 2007)。Klebsieblla sp.為兼性厭氧菌,由上述可知在好氧和厭氧條件下分別利用兩種不同的途徑代謝甘油能分別得到其主要的代謝產物,在好氧的條件下,甘油代謝由3-磷酸甘油操縱子 (glp)調控;甘油在依賴ATP的甘油激酶催化下磷酸化,生成3-磷酸甘油,3-磷酸甘油在甘油脫氫酶作用下轉化為磷酸二羟丙酮進入酵解途徑,進而生成BDO;在厭氧條件下,甘油的代謝主要由二羟丙酮 (dha)調控,分別為氧化和還原兩條途徑,在氧化途徑,甘油在依賴NAD+的脫氫酶的催化下脫氫轉變為二羟丙酮,二羟丙酮在二羟丙酮激酶的

作用下磷酸化為磷酸二羟丙酮,進而進入酵解途徑生成BDO、乳酸、甲酸、乙醇等代謝副產物。在還原路徑中甘油則是以在甘油脫水酶的作用下轉變為甘油3-羥基丙醛,然後利用氧化還原途徑生產的NADH,在依賴於NADH的1,3¬-PDO-NAD氧化還原酶的作用下生成PDO。GDHt是催化甘油轉化生成PDO代谢途徑中的關键限速酶,因此,後續將可以使用GDHt之酶活性監測不同發酵策略對PDO合成的影響(Wong et al., 2011)。(2) pH發酵液的pH值對BDO、PDO生成途徑的影響作用是非常大的。這是因為BDO生產是一個多副產物的途徑,每種副產物生成途徑的相關酵素最適合的pH並不一致,因此發酵過

成中pH不僅會影響細菌的生長還會影響細菌的代謝過程。微生物以甘油為碳源發酵生產PDO的過程中,經由pH的控制策略可以有效的增加甘油的轉化率和控制副產物生產。目前PDO的發酵生產主要都採用間歇性的發酵過程,隨著甘油濃度的降低及產物PDO的累積,使菌體的生長速度逐漸緩慢,產生嚴重的產物抑制效應 (Ji et al.,2007)。所以可以利用發酵過程中pH的波動加上分批饋料的方式,因為發酵過程中當PDO逐漸增加時,菌體生長的環境也隨著改變,以至於菌體的生長速率下降,使副產物的產量隨之增加,所以將pH維持於中性可以維持菌體的生長速率,也可以降低副產物的大量產生。所以運用此策略可以提高PDO的最終濃度、

提高甘油的轉化率、抑制副產物的生產。無控制pH值的發酵過程中24小時內的pH值自然地快速下降至低點,此過程pH值差約3.5~4.0,此pH的快速下降是由於BDO和酸類的生成。強迫pH值的波動之方法是利用固定時間間距調整pH值,然而發酵液會自發性的降回低點,使發酵過程中能模仿自然發酵中的pH值變化,pH值能於明確的時間間距中不斷震盪。此新方法可以有效的提升BDO和PDO的生產及增加甘油的利用率(Petrov et al., 2010)。本實驗將於固定時間間距 (12 hr、24 hr)將pH值調整至7.0以觀察BDO和PDO之生產變化。(3) 添加醋酸、乙醇的影響文獻曾提出在發酵液中添加醋酸、

乙醇可以有效的提升甘油的利用率和BDO產量的提升,由圖2-1的甘油代謝路徑圖可以發現甘油經由甘油脫氫酶催化作用後可以代謝出BDO、琥珀酸、乳酸、醋酸、乙醇等代謝產物,因此在發酵液中各別添加副產物少量醋酸、乙醇,發現能在甘油代謝過程中產生產物抑制效應,使碳流減少利用於生產此兩種副產物,進而有效利用於BDO的生產 (Zeng e tal., 1990)。本次實驗也是利用此原理,在發酵液中添加亦為副產物的乳酸並測試添加不同濃度的乳酸對BDO與PDO生產的影響。三、材料與方法3-1 實驗材料3-1-1 實驗菌種本實驗所採用的菌株Klebsiella sp. Ana-WS5,具有發酵生產二醇類的能力,

由國立成功大學化工系張嘉修教授所提供。此菌株篩選於國立成功大學實驗所高效率生物消化系統中的污泥,經利用16S rRNA基因序列(圖3.1)與Genbank鑑定後確定菌株種類為Klebsiebllasp.,並命名為Klebsieblla sp. Ana-WS5。圖3-1 Klebsiella sp. Ana-WS53-2 實驗架構圖3-2 實驗架構Ⅰ (懸浮培養)圖3-3 實驗架構Ⅱ (固定化培養)四、結果與討論4-1 搖瓶批次發酵程序(Flask Experiments)4-1-1 不同碳源之影響此實驗為探討不同碳源對於菌體生長及BDO與PDO產量之影響。由圖4-1得知,菌體濃度以甘油為碳源時

最高,約2.3 g/L。BDO以葡萄糖為碳源時產量最高,PDO、Total Diols以甘油為碳源時最高,由於甘油能同時生產BDO與PDO,而葡萄糖主要為生產BDO。以甘油當作碳源,能得到較高的菌體濃度且由代謝路徑可知利用不同發酵策略能分別生產較高BDO與PDO。且由於現今生質柴油產量日益增加,其副產物粗甘油也大量的生產,未來以粗甘油為替代碳源將可以降低生產成本。因此,選定甘油當作後續培養所使用的碳源。圖4-1 不同碳源對菌體生長及產物產量之影響4-1-2 添加不同乳酸濃度之影響文獻指出,當以Klebsiellasp.生產BDO時,若在培養基中添加少許的代謝副產物醋酸或乙醇,會使BDO的產量有

所提升。所以本次實驗為探討添加亦是代謝副產物的乳酸在不同濃度下對菌體生長及BDO與PDO產量之影響。由圖4-2可知,效果以添加10 g/L為最好,較控制組高出30%,其BDO、PDO、Total Diols分別為26.3 g/L、10.8 g/L、37.1 g/L。此結果由圖2-1甘油代謝路徑推測當培養基中添加乳酸,由於產物濃度效應而使甘油代謝路徑向BDO,故提高BDO的產量。圖4-2 添加不同濃度的乳酸對菌體生長及BDO與PDO產量之影響4-1-3 細胞固定化之重複批次實驗本次實驗探討以海藻酸鈉為固定化載體的固定化細胞進行Repeated-Batch實驗對BDO與PDO產量之影響,每一次批次

以96小時為一個循環。由圖4-3所示,固定化細胞在第一批次到第三批次發酵實驗中,雖然主要代謝產物的產量有略微的下降,但BDO和PDO的產量分別都可以維持在20 g/L、11 g/L左右。但在第四批次實驗,凝膠球會開始破裂使菌體流出凝膠球外,推測凝膠球破裂後浸泡於培養基中,造成培養基的改變加上菌體的活性降低,導致主要代謝產物的產量下降。圖4-3 細胞固定化之重複批次實驗對BDO與PDO產量之影響4-2 5-L攪拌式發酵槽批次程序 (Batch)4-2-1 控制溶氧量之影響溶氧量高低會影響菌體的生長與甘油代謝路徑,本次實驗控制溶氧量於高DO值(70 ± 10%)與低DO值(10 ± 10%)之批

次發酵策略,來探討不同的溶氧發酵策略對菌體生長及BDO與PDO產量之影響。由圖4-4所示,在高溶氧策略下,細胞能快速生長並得到較高的菌體濃度2.7 g/L而低溶氧時的菌體濃度僅達1.7 g/L且在主要代謝產物BDO方面,高溶氧發酵和控制組的最大濃度幾乎相同約30.3 g/L,但其BDO的生產速率為0.42 g/Lh遠大於控制組的0.16 g/Lh,約2.6倍之多;於PDO方面,反而於低溶氧的狀態下是較有利於Klebsiella sp.生產PDO,因為其PDO生產速率可達0.27g/Lh是控制組0.12 g/Lh的兩倍左右。由表4-29可發現,由高低溶氧的發酵策略可以使同時生產PDO和BDO的K

lebsiella sp.對生產其中的某一產物選擇性較大,提高其中一個產物的生產量同時降低另一個代謝產物的生產,更有助於後續分離純化的步驟。圖4-4 控制溶氧量之比較4-2-2 固定pH值之影響文獻指出pH值控制於6.0~7.0是較適合Klebsiella sp.生長(Jiet al., 2011)。因此本次實驗分別將pH值控制於6.0、7.0,探討不同的pH值發酵策略對於菌體生長及BDO與PDO產量之影響,由圖4-5可發現,將pH固定於6.0、7.0時,菌體濃度最高為pH固定於7.0。固定pH會使PDO的產量和生產速率明顯的提升。當發酵過程中pH均固定於7.0時,PDO的最大濃度與生產速率能

提升至25.0 g/L、0.33g/Lh;但在BDO方面固定pH值之發酵策略無法對產量或生產速率有所幫助。雖然此方法不利於BDO的生產,但對於菌體生長和PDO生產方面卻是有不錯的進展。圖4-5 固定pH之比較4-2-3 固定時間間距調整pH之批次發酵實驗本次實驗將仿效控制組pH自然快速下降的變化來測試產物產量和生產速率的影響。培養並利用5N NaOH在固定時間間距分別為12小時和24小時調整槽內發酵液的pH值,調整為7.0,直到pH不再下降至7.0以下。由圖4-6可以發現,當pH被調整為7.0之後12小時之內即又下降,所以此方法可以有效地強迫pH產生震盪變化。實驗結果如圖4-28所示,此強迫p

H來回震盪的方法確實可以提升BDO的生產速率,但依舊無法提高BDO的產量,推測是因為碳源甘油快速地被消耗,以至於產量無法繼續提升;PDO方面,此方法跟固定pH值一樣有利於PDO的生產,甚至效果更好。比較兩種不同時間間距所得到的數據,在主要代謝產物方面,以24小時調整一次的效果比12小時調整一次較佳,因為pH值12小時內掉回5.0以下,在pH維持 5.0以下的時間會長達12小時,此環境是有利於BDO的生長,所以BDO的產量會較好。因此pH的強迫震盪是可以有效刺激BDO、PDO,提升生產速率,而不同的pH環境,更可以提升各別的產量。圖4-6 固定時間間距調整pH之比較4-3 5-L攪拌式發酵槽饋

料批次程序 (Fed-batch)4-3-1 固定時間間距調整pH之饋料批次發酵實驗由4-2-3批次實驗得到每24小時調整pH至7.0可有效的提升BDO、PDO的生產速率,但因為碳源在96小時內快速消耗,以致無法持續提升BDO的產量。因此本實驗以每24小時調整pH值之間隔式饋料批次發酵策略來改善主要代謝產物產量不佳的問題。但間隔式饋料是具有產物延遲累積的問題,並用連續式饋料作為改善。由圖4-30可會發現連續式饋料確實可改善產物延遲累積的問題,且饋料批次也能以提升主要代謝產物產量,BDO的最大濃度由14.3 g/L 增加至20 g/L,PDO也更從30.1 g/L提升至54.8 g/L。。圖4-

7 饋料批次之比較五、結論由搖瓶實驗可知,甘油可以提高菌體濃度且得到較好的Total Diols。在培養基中添加乳酸能有效提升Total Diols約30 %。而包埋法之固定化細胞重複批次實驗可以重複四次批次實驗,前三次批次BDO和PDO都可以維持在20 g/L、11 g/L;第四次批次凝膠球則會破裂。細胞固定化對產物的生產沒有提升效果但有利進行微生物細胞重複利用。5-L攪拌式發酵槽批次發酵之溶氧實驗中,高溶氧,可以獲得細胞較高的菌數量2.8 g/L、提高BDO的最大濃度30.1 g/L、生產速率0.42 g/Lh、產率0.43 g/g;低溶氧批次發酵反而有利於PDO的生產,最大濃度17.2

g/L、生產速率0.13 g/Lh、產率0.59 g/g;固定pH實驗,以pH值控制於7.0時可得較高的菌體濃度2.8 g/L、PDO的產量和生產速率明顯的提升至25.0 g/L、0.33g/Lh;固定時間間距調整pH至7.0實驗,以每24小時調整pH值至7.0相對於固定pH 7.0可有效提升BDO的生產速率(由0.13提升至0.20 g/Lh),此方法跟固定pH值一樣有利於PDO的生產,甚至效果更好。5-L攪拌式發酵槽饋料批次發酵之固定時間間距調整pH至7.0實驗,強迫性的pH震盪有助菌體的活性,發酵液中pH的改變也可以改變甘油的代謝路徑進而提高BDO、PDO生長速率 (0.20 g/Lh、

0.42 g/Lh),之後再利用饋料的方式,來促進BDO、PDO (20.0 g/L、54.8 g/L)產量;而兩種不同的饋料方式,差別僅於連續式饋料批次可以改善間隔式饋料批次時產物延遲生產的問題,對產物的產量並無明顯影響。參考文獻Biebl H., Zeng A.P., Menzel K., Deckwer W.D., (1998). Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol byKlebsiella pneumonia. ApplMicrobiolBiotechnol, 50:24-29.Biebl H.,

Menzel K., Zeng A.P., Deckwer W.D., (1999). Microbial production of 1,3-propanediol. ApplMicrobiolBiotechnol, 52:289-297.Grover B.P., Garg S.K., Verma J., (1990). Production of 2,3-butanediol from wood hydrolysatebyKlebsiella pneumonia. World J. MicrobiolBiotechnol,6:328-332.Harden A., Walpole G.S.

, (1906). 2,3-Butylene glycol fermentation byAerobacter aerogenes. Proc. Royal Soc, 77: 399-405.Idris A.,Suzana W., (2007). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. P

rocess Biochemistry, 41:1117-1123.Kurian J.V., (2005). A new polymer platform for the future-Sorona from corn derived 1,3-propanediol. J Polym Environ,44:857-862.Petrova P., Petrov K., Beschkov V., (2009).Production of 1, 3-propanediol from glycerol by newly isolated strains of Klebsiellapneumonia.C

ompt Rend AcadBulgSci, 62:233-242.Petrov K. and Petrov P., (2010). Enhanced production of 2,3-butanediol from glycerolby forced pH fluctuations.ApplMicrobiolBiotechnol, 87:943-949.Reimann A., Biebl H., Deckwer W.D., (1998). Production of 1,3-propanediol by Clostridium butyricumin continuous culture

withcell recycling. ApplMicrobiolBiotechnol, 49: 359-363.Sun Y., Begum A.A., Sadi S., (1992). Production of L(+)-lactic acid from glucose and starch by gamma-ray-induced polymerization. Biotechnology and bioengineering, 74:379-383.Syu M.J., (2001). Biological production of 2,3-butanediol. ApplMicrob

iolBiotechnol, 55:10-18.Wong C.L.,Huang C.C., Chen W.M., Chang J.S., (2011). Converting crude glycerol to 1,3-propandiol using resting and immobilizedKlebsiellasp. HE-2 cells. Biochemical Engineering Journal, 58:177-183.Wong C.L.,Huang C.C., Lu W.B., Chang J.S., (2012). Producing 2,3-Butanediol from

agricultural waste using an indigenous Klebsiella sp. Zmd30 strain. Biochemical Engineering Journal, 69: 32-40.

高速公路電子收費系統政策之變遷:演化觀點

為了解決不限速不降速差別的問題,作者張喬怡 這樣論述:

本研究在探討高速公路電子收費系統政策,影響其政策演化的因素為何?藉由個案研究與政策變遷理論的結合,尋找政策變遷的因素。除了個案研究外,並藉由質化訪談來驗證理論。理論部分先介紹政策變遷的概念、類型及理由,之後一一敘述相關的政策變遷理論,再說明本研究所採取的政策變遷理論。個案為高速公路電子收費系統(Electronic Toll Collection;ETC)以下簡稱ETC政策,歷經十年規劃、招商、建置、開通,ETC政策從規劃到執行階段卻因為各種因素,由國營轉為BOT(Build-Operate-Transfer;興建營運移轉),轉為BOT後,亦有相當多的爭論、弊案傳出,本章將介紹ETC政策的歷

史沿革,試圖從中尋找政策變遷的影響因素,希望能對未來的ETC政策有所貢獻。ETC政策前後規劃達十年之久,歷經中華電信預算被刪,改採BOT決策轉折,到後來由遠通取得最優申請人,但在二OO六年二月二十四日卻遭高等行政法院撤銷最優申請人資格,在二OO六年八月三日更被最高行政法院認定ETC政策當初的招標違反公平、平等原則,ETC案必須重新招標。將個案與理論相結合,發現理念、個人、利益與機構是相互影響,並無任何一個因素是絕對的自變項或依變項。在ETC政策變遷的過程中,較易觀察的因素為「個人因素」及「機構因素」,原因是因為個人和機構會有外顯的行為,而利益和理念則隱藏在作為中。最後在最後一章說明研究發現與政

策建議。