gate半導體的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

gate半導體的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦楊善國 寫的 應用電子學(第二版)(精裝本) 和劉傳璽,陳進來的 半導體元件物理與製程:理論與實務(四版)都 可以從中找到所需的評價。

另外網站台積電半導體製程競爭力關鍵:FinFET 工作原理 - StockFeel 股感也說明:半導體 供應鏈指出,蘋果自行開發應用在5G 的射頻接收器(RF ... 在MOSFET 中,「閘極長度(Gate length)」大約10 奈米,是所有構造中最細小也最難 ...

這兩本書分別來自全華圖書 和五南所出版 。

國立陽明交通大學 電子物理系所 簡紋濱所指導 李天任的 少數層二硒化鈀之電性傳輸與熱電性質 (2021),提出gate半導體關鍵因素是什麼,來自於二硒化鈀、熱電效應、席貝克效應、熱電功率因子。

而第二篇論文國立陽明交通大學 電子研究所 簡昭欣、鄭兆欽所指導 鍾昀晏的 二維材料於邏輯元件與記憶體內運算應用 (2021),提出因為有 二維材料、二硫化鉬、二硫化鎢、二維電晶體、記憶體元件、邏輯閘的重點而找出了 gate半導體的解答。

最後網站2D MOSFET operation of a fully-depleted bulk MoS2 at quasi ...則補充:國際半導體產業學院 ... In this paper, 2D MOSFET operation of a fully-depleted double-gate bulk MoS2 is studied at a quasi-flatband of the back-gate for the ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了gate半導體,大家也想知道這些:

應用電子學(第二版)(精裝本)

為了解決gate半導體的問題,作者楊善國  這樣論述:

  作者依教學經驗及專業知識,並為兼顧學習內容及學習效果,本書由最基礎的半導體材料及PN接面開始講起,到雙層元件(二極體)、三層元件(電晶體)、四層元件(閘流體)、線性積體電路-OP,到常用的應用電路包括:運算放大器構成之應用電路、電壓調整器、主動濾波器、功率放大器等,使學生可習得電子元件及其構成電路的基礎知識。另修習本科目的學生可能來自不同的專業背景,對電學的觀念及基礎或有所不同,為顧及對電學較生疏學生的需要,特別增加「電學基本概念複習」一章(第零章),使學生具有起碼的電路基礎,以協助學生進入電子電路之領域,並助益往後的教學。    本書特色     1.本書由最基礎的半導體材料及PN接

面開始講起,到雙層元件(二極體)、三層元件(電晶體)、四層元件(閘流體)、線性積體電路-OP,到常用的應用電路,使學生可習得電子元件及其所構成電路的基礎知識。     2.修習本科目的學生可能來自不同的專業背景,對電學的觀念及基礎或有不同,特別增加「電學基本概念複習」,使學生具有基礎的電路概念,以協助學生進入電子電路之領域,並助益往後的教學。     3.本書適用大學、科大機械、自動化科系『應用電子學』、『電子學』課程使用。

少數層二硒化鈀之電性傳輸與熱電性質

為了解決gate半導體的問題,作者李天任 這樣論述:

尋找高效率的熱電材料是一個重要而有趣的課題,二維 (Two-Dimensional, 2D) 過渡金屬二硫化合物 (Transition Metal Dichalcogenides, TMDC),因其優越的熱電性能以及未來廣闊的應用前景而受到廣泛關注。其中,二維二硒化鈀 (PdSe2) 因其理論上計算出高熱電性能,吸引了眾多科研工作者的目光。本實驗使用機械剝離法,剝取少數層PdSe2,利用半導體製程技術製作少數層二硒化鈀的場效電晶體與熱電元件,在室溫下研究了二硒化鈀的電性。本實驗中,二硒化鈀為n型半導體材料,電流的開關比 (On/Off Ratio) 約爲104,臨界擺幅 (Subthre

shold Swing, S.S.) 約爲9.52 V/dec,載流子遷移率 (Mobility) 最大為34.7 cm2·V-1·S-1。 另外,在二硒化鈀元件的熱電性能測量上,得到的最大席貝克係數約爲655 µV/K,與理論值十分接近,並觀察到席貝克值與電晶體場效應有關聯性。當閘極偏壓設定在臨界電壓附近時,席貝克係數到達峰值,而當閘極偏壓小於臨界電壓時,通道關閉沒有熱電效應。最後計算了二硒化鈀的熱電功率因子(Power Factor, PF),通過調節閘極偏壓觀察熱電功率因子隨場效應的變化,並對比相應的材料層數,發現最大熱電功率因子為0.26 mW/m·K2,材料厚度為12層,證明二硒化鈀

是極具潛力的熱電材料。

半導體元件物理與製程:理論與實務(四版)

為了解決gate半導體的問題,作者劉傳璽,陳進來 這樣論述:

  以深入淺出的方式,系統性地介紹目前主流半導體元件(CMOS)之元件物理與製程整合所必須具備的基礎理論、重要觀念與方法、以及先進製造技術。內容可分為三個主軸:第一至第四章涵蓋目前主流半導體元件必備之元件物理觀念、第五至第八章探討現代與先進的CMOS IC之製造流程與技術、第九至第十二章則討論以CMOS元件為主的IC設計和相關半導體製程與應用。由於強調觀念與實用並重,因此儘量避免深奧的物理與繁瑣的數學;但對於重要的觀念或關鍵技術均會清楚地交代,並盡可能以直觀的解釋來幫助讀者理解與想像,以期收事半功倍之效。     本書宗旨主要是提供讀者在積體電路製造工程上的know-how與know-wh

y;並在此基礎上,進一步地介紹最新半導體元件的物理原理與其製程技術。它除了可作為電機電子工程、系統工程、應用物理與材料工程領域的大學部高年級學生或研究生的教材,也可以作為半導體業界工程師的重要參考   本書特色     ●包含實務上極為重要,但在坊間書籍幾乎不提及的WAT,與鰭式電晶體(Fin-FET)、環繞式閘極電晶體(GAA-FET)等先進元件製程,以及碳化矽(SiC)與氮化鎵(GaN)功率半導體等先進技術。     ●大幅增修習題與內容,以求涵蓋最新世代積體電路製程技術之所需。     ●以最直觀的物理現象與電機概念,清楚闡釋深奧的元件物理觀念與繁瑣的數學公式。     ●適合大專以上學

校課程、公司內部專業訓練、半導體從業工程師實務上之使用。

二維材料於邏輯元件與記憶體內運算應用

為了解決gate半導體的問題,作者鍾昀晏 這樣論述:

半導體產業在過去半個世紀不斷地發展,塊材材料逐漸面臨電晶體微縮的物理極限,因此我們開始尋找替代方案。由於二維材料天生的原子級材料厚度與其可抑制短通道效應能力,被視為半導體產業極具未來發展性材料。此篇論文為研究二維材料二硫化鉬的N型通道元件之製作技術與其材料的特性與應用。首先,我們使用二階段硫化製程所製備的二硫化鉬沉積高介電材料並使用X-射線能譜儀(XPS)與光致發光譜(PL)進行分析,量測二硫化鉬與四種高介電材料的能帶對準,參考以往製程經驗,可結論二氧化鉿是有潛力介電層材料在二硫化鉬上,並作為我們後續元件的主要閘極介電層。接著使用二階段硫化法製作鈮(Nb)摻雜的二硫化鉬,P型的鈮摻雜可提升載

子摻雜濃度用以降低金半介面的接觸電阻,透過不同製程方式製作頂部接觸和邊緣接觸的兩種金半介面結構,傳輸線模型(TLM)分析顯示出,邊緣接觸結構比頂部接觸結構的接觸電阻率低了兩個數量級以上,並藉由數值疊代方式得知層間電阻率是導致頂部接觸結構有較高接觸電阻率主因,並指出邊緣接觸之金半介面在二維材料元件的潛在優勢。在電晶體研究上,我們使用化學氣相沉積(CVD)合成的二硫化鉬成功製作出單層N型通道元件,將此電晶體與記憶體元件相結合,用雙閘極結構將讀(read)與寫(write)分成上下兩個獨立控制的閘極,並輸入適當脈衝訊號以改變儲存在電荷儲存層的載子量,藉由本體效應(Body effect)獲得足夠大的

記憶區間(Memory window),可擁有高導電度比(GMAX/GMIN = 50)與低非線性度(Non-linearity= -0.8/-0.3)和非對稱性(Asymmetry = 0.5),展示出了二維材料在類神經突觸元件記憶體內運算應用上的可能性。除了與記憶體元件結合外,我們亦展示二維材料電晶體作為邏輯閘的應用,將需要至少兩個傳統矽基元件才可表現的邏輯閘特性,可於單一二維材料電晶體上展現出來,並在兩種邏輯閘(NAND/NOR)特性作切換,二維材料的可折疊特性亦具有潛力於電晶體密度提升。我們進一步使用電子束微影系統製作奈米等級短通道元件,首先使用金屬輔助化學氣相沉積 (Metal-as

sisted CVD)方式合成出高品質的二維材料二硫化鎢 (WS2),並成功製作次臨界擺幅(Subthreshold Swing, S.S.)約為97 mV/dec.且高達106的電流開關比(ION/IOFF ratio)的40奈米通道長度二硫化鎢P型通道電晶體,其電特性與文獻上的二硫化鉬N型通道電晶體可說是相當,可作為互補式場效電晶體。另一方面,深入了解二維材料其材料特性後,可知在厚度縮薄仍可保持極高的機械強度,有潛力作為奈米片電晶體的通道材料。故於論文最後我們針對如何透過對元件製作優化提供了些許建議。