ddr4轉ddr3的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

ddr4轉ddr3的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦毛忠宇寫的 信號、電源完整性仿真設計與高速產品應用實例 和(美)艾本·阿普頓等的 使用Raspberry Pi學習計算機體系結構都 可以從中找到所需的評價。

這兩本書分別來自電子工業出版社 和清華大學所出版 。

明新科技大學 管理研究所碩士在職專班 顧鴻壽所指導 譚惠文的 動態隨機存取記憶體智慧財產專利研究分析 (2017),提出ddr4轉ddr3關鍵因素是什麼,來自於動態隨機存取記憶體、三維矽穿孔、立體堆疊封裝、專利分析、專利權、中國DRMA專利。

而第二篇論文國立雲林科技大學 電機工程系 許崇宜所指導 鄭凱覺的 基於信號完整度之蛇形佈線研究 (2016),提出因為有 蛇行佈線補償法的重點而找出了 ddr4轉ddr3的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了ddr4轉ddr3,大家也想知道這些:

信號、電源完整性仿真設計與高速產品應用實例

為了解決ddr4轉ddr3的問題,作者毛忠宇 這樣論述:

目前市面上信號與電源完整性仿真書籍的內容普遍偏於理論知識或分散的仿真樣例,給讀者的感覺往往是「只見樹木不見森林」。針對這種情況,本書基於一個已成功開發的高速數據加速卡產品,從產品的高度介紹所有的接口及關鍵信號在開發過程中信號、電源完整性仿真的詳細過程,對涉及的信號與電源完整性仿真方面的理論將會以圖文結合的方式展現,方便讀者理解。為了使讀者能系統地了解信號與電源完整性仿真知識,書中還加入了PCB制造、電容S參數測試夾具設計等方面的內容,並免費贈送作者開發的高效軟件工具。 本書編寫人員都具有10年以上的PCB設計、高速仿真經驗,他們根據多年的工程經驗把產品開發與仿真緊密結合在

一起,使本書具有更強的實用性。本書適合PCB設計工程師、硬件工程師、在校學生、其他想從事信號與電源完整性仿真的電子人員閱讀,是提高自身價值及競爭力的不可多得的參考材料。

動態隨機存取記憶體智慧財產專利研究分析

為了解決ddr4轉ddr3的問題,作者譚惠文 這樣論述:

目前動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)的應用市場有電腦、先進駕駛輔助系統、人工智慧、無人駕駛車、雲端大數據、網通、行動裝置、物聯網和企業級的線上交易等領域,因此加速對DRAM等記憶體元件有大量的需求,由於DRAM廠商的技術,近年來正在從2D平面製程轉換至3D垂直堆疊製程,在品質良率上的控制還有待於技術及降低製造成本上的突破。本論文將透過 M-Trends 專利分析平台,針對DRAM三維矽穿孔封裝(DRAM 3D through silicon via package,3D TSV)進行基本資料檢索並分析其專利分類技術等 歷年發展的情

況趨勢來分析。本研究結果發現,全球DRAM三維矽穿孔封裝專利件數從2007年至2018年之間,申請總件數為115件,並在2012年專利申請總件數攀升到最高峰為20件,從2013年到2017年之間,專利申請總件數是63件,趨勢開始往下進入衰退期,DRAM專利數量減少的原因,可能表示現階段的技術能力或材料方面,已經碰到瓶頸階段,並非DRAM產品需求減少,因為在全球DRAM市場應用方面,也預估將從2014年的229億美元市場規模大幅成長到2018年的996億美元。就中國市場的DRAM三維矽穿孔封裝專利件數,從2008年至2018年5月之間,申請總件數為67件。其中國市場在DRAM 3D TSV專利競

爭上,第一名是美國美光公司16件,第二名是美國英特爾公司13件,第三名則是韓國三星公司10件,期許未來高知識產業能在研發方面,善用專利分析來探索DRAM產業相關的技術,並提供台灣DRAM廠商未來技術的發展趨勢及其獲利的的策略參考。

使用Raspberry Pi學習計算機體系結構

為了解決ddr4轉ddr3的問題,作者(美)艾本·阿普頓等 這樣論述:

Raspberry Pi的誕生,深受20世紀80年代價格相對低廉的高度可編程計算機(以及它們對英國高新技術產生的影響)的啟發,它激勵新一代程序設計師並為他們提供准入平台。經濟成本和技術門檻的可接受性,使得Raspberry Pi成為學習計算機工作原理的理想工具。《使用Raspberry Pi學習計算機體系結構》將會是你整個Raspberry Pi內幕發現之旅的私人指南,也將成為你學習由Raspberry Pi完美詮釋的知識庫的專業級教練。作者Eben Upton和Jeff Duntemann是理想的導師:作為Raspberry Pi的共同創始人,Upton展現出他的深刻洞察力;Dunteman

則將復雜的技術知識凝練為易於理解的解釋。以Raspberry Pi這塊信用卡般大小的計算機(正在革新編程世界)的體系結構為基礎,Upton和Duntemann共同提供了隱藏在所有計算機背后的技術的專業級指 導。《使用Raspberry Pi學習計算機體系結構》按部就班地講解每個組件,包括組件能做什麼、為何需要它、該組件與其他組件的關系,以及組件創建過程中設計者面臨的選擇等。從內存、存儲器和處理器,到以太網、相機和音頻。Upton和Duntemann相互合作,確保讀者扎實理解Raspberry Pi的內部結構及其整體上與計算背后的技術之間的關系。 第1章 計算機漫談 11.1

日益繽彩紛呈的Raspberry 11.2 片上系統 41.3 一台令人激動的信用卡般大小的計算機 51.4 Raspberry Pi的功能 61.5 Raspberry Pi板 71.5.1 GPIO引腳 71.5.2 狀態LED 91.5.3 USB插口 101.5.4 以太網連接 101.5.5 音頻輸出 111.5.6 復合視頻 121.5.7 CSI攝像頭模塊連接器 131.5.8 HDMI 131.5.9 micro USB電源 141.5.10 存儲卡 141.5.11 DSI顯示連接 151.5.12 裝配孔 151.5.13 芯片 161.6 未來 16第2章計算概述 19

2.1 計算機與烹飪 202.1.1 佐料與數據 202.1.2 基本操作 212.2 按計划執行的盒子 222.2.1 執行和知曉 222.2.2 程序就是數據 232.2.3 存儲器 242.2.4 寄存器 252.2.5 系統總線 262.2.6 指令集 262.3 電平、數字及其表示 272.3.1 二進制:以1和0表示 272.3.2 手指的局限性 292.3.3 數量、編號和0 292.3.4 用於二進制速記的十六進制 302.3.5 執行二進制和十六進制運算 312.4 操作系統:幕后老板 332.4.1 操作系統的功能 332.4.2 向內核致敬 342.4.3 多核 34第3

章電子存儲器35 3.1 存儲器先於計算機而存在 35 3.2 旋轉磁存儲器(Rotating Magnetic Memory) 36 3.3 磁芯存儲器 37 3.3.1 磁芯存儲器的工作過程38 3.3.2 存儲器訪問時間39 3.4 靜態隨機訪問存儲器(SRAM) 40 3.5 地址線和數據線 41 3.6 由存儲器芯片構建存儲器系統42 3.7 動態隨機訪問存儲器(DRAM) 45 3.7.1 DRAM的工作原理 45 3.7.2 同步DRAM和異步DRAM47 3.7.3 SDRAM列、行、Bank、Rank和DIMM 49 3.7.4 DDR、DDR2、DDR3和DDR4 SDRA

M50 3.7.5 糾錯碼存儲器53 3.8 Raspberry Pi的存儲器系統54 3.8.1節能性54 3.8.2球柵陣列封裝55 3.9 緩存 55 3.9.1訪問的局部性56 3.9.2緩存層級56 3.9.3緩存行和緩存映射57 3.9.4直接映像59 3.9.5相聯映射61 3.9.6組相聯高速緩存62 3.9.7回寫緩存到存儲器63 3.10 虛擬存儲器 64 3.10.1虛擬存儲器概覽64 3.10.2虛擬存儲器到物理存儲器的映射65 3.10.3 深入了解存儲器管理單元66 3.10.4 多級頁表和TLB69 3.10.5 Raspberry Pi的交換問題70 3.10.

6 Raspberry Pi虛擬存儲器70 第4章ARM處理器與片上系統73 4.1 急速縮小的CPU 73 4.1.1微處理器74 4.1.2晶體管預算75 4.2 數字邏輯基礎 75 4.2.1邏輯門75 4.2.2觸發器和時序邏輯76 4.3 CPU內部78 4.3.1分支與標志79 4.3.2系統棧80 4.3.3系統時鍾和執行時間82 4.3.4流水線技術83 4.3.5流水線技術詳解84 4.3.6深入流水線以及流水線阻塞86 4.3.7 ARM11 中的流水線88 4.3.8 超標量執行89 4.3.9 基於SIMD的更多並行機制90 4.3.10 字節序92 4.4 CPU再認

識:CISC與RISC 93 4.4.1 RISC的歷史95 4.4.2 擴展的寄存器文件95 4.4.3 加載/存儲架構 96 4.4.4 正交的機器指令96 4.4.5 獨立的指令和數據高速緩存97 4.5 源於艾康的ARM 97 4.5.1微架構、內核及家族98 4.5.2 出售設計許可而非成品芯片98 4.6 ARM11 99 4.6.1 ARM指令集99 4.6.2 處理器模式102 4.6.3 模式和寄存器103 4.6.4 快速中斷107 4.6.5 軟件中斷108 4.6.6 中斷優先級108 4.6.7 條件指令執行109 4.7 協處理器 111 4.7.1 ARM協處理器

接口112 4.7.2 系統控制協處理器113 4.7.3 向量浮點協處理器113 4.7.4 仿真協處理器114 4.8 ARM Cortex 114 4.8.1 多發和亂序執行115 4.8.2 Thumb 2 115 4.8.3 Thumb EE 115 4.8.4 big.LITTLE 116 4.8.5 NEON SIMD協處理器 116 4.8.6 ARMv8和64位計算117 4.9 片上系統 118 4.9.1 博通BCM2835 SoC 118 4.9.2 第二代和第三代博通SoC 設備119 4.9.3 VLSI芯片原理119 4.9.4 流程、制程工藝和掩膜120 4.9

.5 IP:單元、宏單元、內核120 4.9.6 硬IP和軟IP121 4.9.7 平面規划、布局和布線121 4.9.8 片上通信的標准:AMBA 122 第5章程序設計 125 5.1 程序設計概述 125 5.1.1 軟件開發過程126 5.1.2 瀑布、螺旋與敏捷128 5.1.3 二進制程序設計130 5.1.4 匯編語言和助記符131 5.1.5 高級語言132 5.1.6 花樣泛濫的后BASIC 時代134 5.1.7 程序設計術語135 5.2 本地代碼編譯器的工作原理 137 5.2.1 預處理138 5.2.2 詞法分析138 5.2.3 語義分析139 5.2.4 生成中

間代碼139 5.2.5 優化139 5.2.6 生成目標代碼139 5.2.7 C編譯:一個具體示例140 5.2.8 鏈接目標代碼文件到可執行文件145 5.3 純文本解釋程序 146 5.4 字節碼解釋語言 148 5.4.1 p-code 148 5.4.2 Java 149 5.4.3 即時編譯(JIT) 150 5.4.4 Java之外的字節碼和JIT 編譯152 5.4.5 Android 、Java和Dalvik 152 5.5 數據構建塊 152 5.5.1 標識符、關鍵字、符號和操作符153 5.5.2 數值、文本和命名常量153 5.5.3 變量、表達式和賦值154 5.

5.4 類型和類型定義154 5.5.5 靜態和動態類型156 5.5.6 補碼和IEEE 754 157 5.6 代碼構建塊 159 5.6.1 控制語句和復合語句159 5.6.2 if/then/else 159 5.6.3 switch和case 161 5.6.4 repeat循環162 5.6.5 while循環163 5.6.6 for循環164 5.6.7 break和continue語句166 5.6.8 函數166 5.6.9 局部性和作用域168 5.7 面向對象程序設計 170 5.7.1 封裝172 5.7.2 繼承174 5.7.3 多態176 5.7.4 OOP小

結 178 5.8 GNU編譯器工具集概覽178 5.8.1 作為編譯器和生成工具的gcc179 5.8.2 使用Linux make 181 第6章非易失性存儲器185 6.1 打孔卡和磁帶 186 6.1.1 打孔卡186 6.1.2 磁帶數據存儲器186 6.1.3 磁存儲器的黎明188 6.2 磁記錄和編碼方案 189 6.2.1 磁通躍遷190 6.2.2 垂直記錄191 6.3 磁盤存儲器 192 6.3.1 柱面、磁軌和扇區193 6.3.2 低級格式化194 6.3.3 接口和控制器195 6.3.4 軟盤驅動器197 6.4 分區和文件系統 198 6.4.1 主分區和擴展分

區198 6.4.2 文件系統和高級格式化199 6.4.3 未來:GUID分區表 (GPT) 200 6.4.4 Raspberry Pi SD卡的分區201 6.5 光盤 202 6.5.1 源自CD的格式203 6.5.2 源自DVD的格式204 6.6 虛擬硬盤 205 6.7 Flash存儲器206 6.7.1 ROM、PROM和 EPROM 206 6.7.2 Flash與EEPROM 207 6.7.3 單級與多級存儲209 6.7.4 NOR Flash與NAND Flash 210 6.7.5 損耗平衡及Flash轉換層213 6.7.6 碎片回收和TRIM 214 6.7.

7 SD卡 215 6.7.8 eMMC216 6.7.9 非易失性存儲器的未來217 第7章有線和無線以太網219 7.1 網絡互連OSI參考模型220 7.1.1 應用層222 7.1.2 表示層222 7.1.3 會話層223 7.1.4 傳輸層223 7.1.5 網絡層224 7.1.6 數據鏈路層226 7.1.7 物理層226 7.2 以太網 227 7.2.1 粗纜以太網和細纜以太網227 7.2.2 以太網的基本構想227 7.2.3 沖突檢測和規避228 7.2.4 以太網編碼系統2297.2.5 PAM-5 編碼2327.2.6 10BASE-T和雙絞線233 7.2.7

從總線拓撲結構到星型拓撲結構234 7.2.8 交換以太網235 7.3 路由器和互聯網 237 7.3.1 名稱與地址237 7.3.2 IP地址和TCP端口2387.3.3 本地IP地址和DHCP 240 7.3.4 網絡地址轉換242 7.4 Wi-Fi 243 7.4.1 標准中的標准244 7.4.2 面對現實世界245 7.4.3 正在使用的Wi-Fi 設備 248 7.4.4 基礎設施網絡與Ad Hoc 網絡249 7.4.5 Wi-Fi 分布式介質訪問 250 7.4.6 載波監聽和隱藏結點問題251 7.4.7 分片253 7.4.8 調幅、調相和QAM 253 7.4.9

擴頻技術256 7.4.10 Wi-Fi 調制和編碼細節256 7.4.11 Wi-Fi 連接的實現原理259 7.4.12 Wi-Fi 安全性 260 7.4.13 Raspberry Pi上的Wi-Fi 261 7.4.14 更多的網絡263 第8章操作系統 2658.1 操作系統簡介 2668.1.1 操作系統的歷史 2678.1.2 操作系統基礎 2708.2 內核:操作系統的核心主導者 2748.2.1 操作系統控制 2768.2.2 模式 2768.2.3 存儲器管理 2778.2.4 虛擬存儲器 2788.2.5 多任務處理 2788.2.6 磁盤訪問和文件系統 2798.2.7

設備驅動程序 2798.3 操作系統的使能器和助手 2798.3.1 喚醒操作系統 2808.3.2 固件 2838.4 Raspberry Pi上的操作系統 2838.4.1 NOOBS 2848.4.2 第三方操作系統 2858.4.3 其他可用的操作系統 285第9章 視頻編解碼器和視頻壓縮 2879.1 第一個視頻編解碼器 2889.1.1 利用眼睛 2889.1.2 利用數據 2909.1.3 理解頻率變換 2939.1.4 使用無損編碼技術 2979.2 時移世易 2989.2.1 MPEG的最新標准 2999.2.2 H.265 3029.3 運動搜索 3029.3.1 視頻質

量 3049.3.2 處理能力 305第10章 3D圖形307 10.1 3D圖形簡史307 10.1.1 圖形用戶界面(Graphical User Interface,GUI) 308 10.1.2 視頻游戲中的3D圖形310 10.1.3 個人計算和顯卡311 10.1.4 兩個競爭標准312 10.2 OpenGL圖形管線 314 10.2.1 幾何規范和屬性315 10.2.2 幾何變換317 10.2.3 光照和材質320 10.2.4 圖元組裝和光柵化322 10.2.5 像素處理(片段着色)324 10.2.6 紋理326 10.3 現代圖形硬件 328 10.3.1 瓦片渲染

329 10.3.2 幾何拒絕330 10.3.3 着色332 10.3.4 緩存333 10.3.5 Raspberry Pi GPU 334 10.4 Open VG 336 10.5 通用GPU 338 10.5.1 異構體系結構338 10.5.2 OpenCL 339 第11章音頻 341 11.1 現在能聽到我的聲音嗎?341 11.1.1 MIDI342 11.1.2 聲卡342 11.2 模擬與數字343 11.3 聲音和信號處理344 11.3.1 編輯344 11.3.2 壓縮345 11.3.3 使用特效錄制345 11.3.4 編碼和解碼通信信息346 11.4 1位D

AC 347 11.5 I2S 349 11.6 Raspberry Pi聲音輸入/輸出350 11.6.1 音頻輸出插孔350 11.6.2 HDMI350 11.7 Raspberry Pi的聲音351 11.7.1 Raspberry Pi板載聲音351 11.7.2 處理Raspberry Pi的聲音351 第12章 輸入/輸出359 12.1 輸入/輸出簡介 359 12.2 I/O使能器 362 12.2.1 通用串行總線363 12.2.2 USB有源集線器365 12.2.3 以太網367 12.2.4 通用異步收發器368 12.2.5 小型計算機系統接口368 12.2.6

PATA 369 12.2.7 SATA 369 12.2.8 RS-232串口 370 12.2.9 HDMI 370 12.2.10 I2S 371 12.2.11 I2C 371 12.2.12 Raspberry Pi顯示器、攝像頭接口和JTAG 372 12.3 Raspberry Pi GPIO 373 12.3.1 GPIO概述以及博通SoC 373 12.3.2 接觸GPIO 374 12.3.3 可編程GPIO 380 12.3.4 可選模式385 12.3.5 GPIO實驗的簡單方法 385

基於信號完整度之蛇形佈線研究

為了解決ddr4轉ddr3的問題,作者鄭凱覺 這樣論述:

隨著資料傳輸速度的提高,對數位電路佈局的限制愈加嚴苛,以往的佈線規範可能已無法適用於現今的高速數位電路。在高速數位電路中,蛇行佈線是被用來達到延時與同步目的所採用的有效方法之一,本論文研究的是其規範,期盼所歸納的規範能有助於產業的發展。我們先從時域反射訊號觀察蛇行線上的巨觀特徵阻抗變化,探討各種參數變化對特徵阻抗的影響,再以DDR4、PCIe與SATA三個傳輸介面為例,觀察蛇行佈線對眼圖參數的影響,得出蛇行佈線的使用限制。然而訊號線長度調整中,必定有調整長度不敷使用的情形,若使用貫孔或更換板材的方法予以改善,必然使電路製作成本提高,故於論文尾聲提出三種補償方法,其三種方法均為以不更動電路疊構

與不增加電路佈局面積為前提,改善蛇行佈線造成的傳輸線阻抗變動。