SiP Module的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

國立陽明交通大學 電子研究所 陳宏明、江蕙如所指導 何舉文的 系統模組的再佈局自動生成平台 (2021),提出SiP Module關鍵因素是什麼,來自於靜態電路壓降、實體電路自動化、線性規劃、系統封裝、系統模組。

而第二篇論文國立高雄科技大學 機械工程系 許兆民所指導 阮雋汧的 晶片封裝用雙門式無氧烘乾烤箱溫度分佈之研究分析 (2021),提出因為有 無氧烘乾烤箱、均溫性、CFD、有限體積法、Ansys Fluent Expressions的重點而找出了 SiP Module的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了SiP Module,大家也想知道這些:

系統模組的再佈局自動生成平台

為了解決SiP Module的問題,作者何舉文 這樣論述:

隨著現今物聯網與穿戴式裝置的崛起,我們對於系統模組的面積要求日益嚴格。系統封裝(SiP)相較於普通的模組可以提供更密的連線與擺放,因此廣泛使用於現在的系統設計中。而我們提出一種系統再規劃的想法,重新規劃原本系統模組,將模組移植到系統封裝中,將高密度連接區域分布於封裝層如匯流排,再將其他部分電路分布於印刷電路板層如電壓源與接地。這篇論文提出一種三階段方法來解決上述問題。我們提出的方法包含分群、擺置與繞線,分群用於決定哪些模組需要置放於同封裝內,繞線則用於優化訊號線總長度、電壓降與通孔數量。根據我們的實驗結果,在多個系統設計中,我們可以快速且有效地在考慮設計上的限制下完成分群,並且優化電路板上的

電壓降與最短化其訊號線繞線長度。

晶片封裝用雙門式無氧烘乾烤箱溫度分佈之研究分析

為了解決SiP Module的問題,作者阮雋汧 這樣論述:

本研究針對溫度均勻分佈於無氧烘乾烤箱實際狀況進行電腦模擬分析,本文中以配合自動化轉型而設計之雙門式無氧烘乾烤箱為參考模型,使用ANSYS Workbench的流體力學模組,並依照標準規範溫度曲線:0s至900s從室溫25 ℃加溫至135 ℃後,再保持135 ℃至1200s,接著1200s至1800s從135度加溫至175 ℃,接著保持175 ℃至5400s,最後溫度需在7200s時降溫至80 ℃,與嘗試錯誤法(Trial and Error Method)之方式對於無氧烘乾烤箱內部的加熱器之功率、冷卻器內部氣體之流速及熱絕緣材料之保溫性能進行不同的參數組合測試。 經過分析測試後

,以前段(0s至1200s)功率部分為Front Ⅴ的211W與150W,中段(1200s至5400s)功率部分為Middle Ⅵ的191W與140W,後段(5400s至7200s)流速部分為Back Ⅵ的4 m/s,同時配合熱絕緣產品Microtherm Board的參數組合能計算出最趨近標準規範的總平均溫度曲線。 結果顯示在900s、1200s、1800s、5400s與7200s五個時間點上的溫度數值與標準規範誤差值都低於3%,再由不同的溫度分佈圖與各感測點溫度數值可觀察出經過第二次持溫作業後,各感測點之間的溫度差都保持在1 ℃左右,表示無氧烘乾烤箱的內部作業空間的溫度是維持在良好的

均勻分佈狀態。