Ex vivo in vitro的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

Ex vivo in vitro的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦寫的 Staphylococcus Aureus: Methods and Protocols 和的 Brain Tumors都 可以從中找到所需的評價。

另外網站關於ex vivo和in vitro的區別這篇文章說得很清楚- 人人焦點也說明:(1)ex vivo通常涉及使用直接收穫自生物體的器官或組織,即從活體取材。常見的例子包括皮膚、腦組織、小腸、心臟等,有時也會使用細胞、血液等。而in vitro通常涉及使用更 ...

這兩本書分別來自 和所出版 。

高雄醫學大學 醫藥暨應用化學系博士班 王志光 教授所指導 Swathi Nedunchezian的 運用仿生支架進行骨軟骨修復組織工程的生物設計策略 (2021),提出Ex vivo in vitro關鍵因素是什麼,來自於透明質酸、明膠、混合水凝膠、3D 生物陶瓷腳手架、軟骨組織工程。

而第二篇論文國立宜蘭大學 生物技術與動物科學系動物科學碩士班 游玉祥所指導 莊凱博的 靈芝水萃液於肉雞發炎模式下對生長性能、腸道型態及盲腸菌相之影響 (2021),提出因為有 肉雞、靈芝、免疫調節的重點而找出了 Ex vivo in vitro的解答。

最後網站In Vivo, ex Vivo, in Vitro, in Silico: Models in the Life Sciences則補充:In Vivo, ex Vivo, in Vitro, in Silico: Models in the Life Sciences – A Conference or similar with talks by Giovanni Boniolo (Università degli Studi di ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Ex vivo in vitro,大家也想知道這些:

Staphylococcus Aureus: Methods and Protocols

為了解決Ex vivo in vitro的問題,作者 這樣論述:

Preface...Table of Contents...Contributing Authors...1. Measurement of Staphylococcus aureus Pigmentation by Methanol ExtractionLeia E. Sullivan and Kelly C. Rice2. Analysis of Murein Hydrolases and Proteases through ZymographyNichole A. Seawell and Jeffrey L. Bose3. Detection and Quantification

of Secreted Nuclease Activity in Staphylococcus aureus Culture SupernatantsRichard E. Wiemels, Rebecca A. Keogh, and Ronan K. Carroll4. Quantitative Hemolysis AssaysMiranda J. Ridder, Seth M. Daly, Pamela R. Hall, and Jeffrey L. Bose5. In Vitro Assay for Quantifying Clumping of Staphylococcus aureus

Heidi A. Crosby, Jakub M. Kwiecinski, and Alexander R. Horswill6. Measuring Staphylococcal Promoter Activities using a Codon-Optimized β-galactosidase ReporterChristina N. Krute, Nichole A. Seawell, and Jeffrey L. Bose7. Evaluation of Staphylococcus aureus Antibiotic Tolerance using Kill Curve Assa

ysJessica N. Brandwein and Kelly C. Rice8. Fluorescence Polarization (FP) Assay for Measuring Staphylococcus aureus Membrane FluidityKiran B. Tiwari, Suranjana Sen, Craig Gatto, and Brian J. Wilkinson9. Quantification of Staphylococcus aureus Biofilm Formation by Crystal Violet and Confocal Microsco

py Adam B. Grossman, Dylan J. Burgin, and Kelly C. Rice10. Growth of Staphylococcus aureus using a Rotary Cell Culture System Matthew R. Hauserman and Kelly C. Rice 11. Time-Resolved Fluorescence Assay for Measuring Oxygen Consumption Rates in Staphylococcus aureusLogan L. Bulock, Jennifer L. Endres

, and Marat R. Sadykov12. Quantifying Staphylococcus aureus Membrane Potential using Flow CytometryNeal D. Hammer13. Best Practices for Preparation of Staphylococcus aureus Metabolomics Samples Kimberly L. James and Kelly C. Rice14. A Rat Model of Orthopedic Implant-Associated Infection for Identifi

cation of Staphylococcal Biofilm ProteinsMei G. Lei, Ravi Kr. Gupta, and Chia Y. Lee15. An Ex Vivo Model for Assessing Growth and Survivability of Staphylococcus aureus in Whole Human Blood Brittney D. Gimza, Stephanie M. Marroquin, and Lindsey N. Shaw16. Bone Marrow-Derived Macrophage Infection Ass

ayMiranda J. Ridder, Mary A. Markiewicz, and Jeffrey L. Bose17. Measurement of Osteoblast Cytotoxicity Induced by S. aureus Secreted ToxinsCaleb Ford and James E. Cassat18. Human Skin In Vitro Colonization Model for a Skin Wound Infected by Staphylococcus aureus BiofilmJenelle Chapman and Michael E.

OlsonSubject Index List...

運用仿生支架進行骨軟骨修復組織工程的生物設計策略

為了解決Ex vivo in vitro的問題,作者Swathi Nedunchezian 這樣論述:

Acknowledgment iii摘要 vAbstract viiList of figures xiii1. Chapter One 1Introduction 11.1 Problem statement 11.1.1 Articular cartilage 31.1.2 Structure and composition of articular cartilage 31.1.3 Articular cartilage defect 51.2. Surgical techniques for cartilage and Osteochondral repair

currently in use 61.2.1 Bone marrow techniques 61.2.2 Mosaiplasty 81.2.3 Autologous chondrocyte implantation method 91.2.4 Matrix induced autologous chondrocyte implantation 111.3. Tissue engineering approaches to Osteochondral defect repair 121.3.1 Scaffold and hydrogel-based cell delivery 1

41.4. Cell source for tissue engineering purposes 161.4.1 Chondrocyte cells 161.4.2 Adult somatic stem cells 171.4.3 Bone marrow-derived stem cell (BMSCs) 181.4.4 Adipose-derived stem cells (ADSCs) 191.5 Scaffolds and hydrogels for tissue engineering 211.5.1 Natural hydrogels in cartilage tiss

ue engineering 251.6. Crosslinking of hydrogel for tissue engineering purpose 291.6.2 Silicon-dioxide Nanoparticle as crosslinkers in tissue engineering 341.6.3 Interaction of SiO2 nanoparticle with adipose-derived stem cells 361.7 Bio ceramics for Osteochondral tissue engineering and regenerati

on 371.7.1 Bio ceramics in Tissue engineering applications 371.7.2 Applications of bioceramics in Osteochondral tissue engineering 391.8 Research Objectives 421.8.1 The specific aims of this thesis are as follows: 43Chapter Two 44Characteristic and chondrogenic differentiation analysis of hybr

id hydrogels comprise of hyaluronic acid methacryloyl (HAMA), gelatin methacryloyl (GelMA), and the acrylate functionalized nano-silica crosslinker 442.1 Introduction 442.2 Materials and methods 522.2.1 Materials 522.2.2 Synthesis of HAMA hydrogel 522.2.4 Synthesis of acrylate functionalized nS

i crosslinker (AFnSi) 532.2.5 Identification of the synthesis HAMA and GelMA 542.2.6 Production of hybrid hydrogels 552.2.7 Identification of the synthesis AFnSi cross-linker 552.2.8 Fabrication of HG hybrid hydrogels 562.2.9.Swelling ratio evaluation 562.2.10 The microstructure morphology ana

lysis 572.2.11 Mechanical properties evaluation 572.2.12 In vitro degradation assay by hyaluronidase 582.2.13 Isolation and culturing of hADSCs 592.2.14 Cell viability assay 602.2.15 Chondrogenic marker gene expression 612.2.15 Quantification of DNA, sGAG deposition and collagen type Ⅱ synthes

is 622.2.16 Statistical analysis 632.3. Results and Discussion 632.3.1.Identification of the synthesis HAMA and GelMA 632.3.2 Identification of the AFnSi crosslinker 672.3.3 Swelling ratio of HG hybrid hydrogels 702.3.4 Morphological examination of HG hybrid hydrogels 722.3.5 Compressive stud

y of HG hybrid hydrogels 752.3.6.Viscoelastic property of HG hybrid hydrogel 782.3.7. Degradation study of HG hybrid hydrogels 812.3.8.Cell viability evaluation of hADSCs on HG hybrid hydrogels 822.3.8. Chondrogenic differentiation ability of HG hybrid hydrogels 852.4. Conclusion 90Chapter Thr

ee 92Multilayer-based scaffold for Osteochondral defect regeneration in the rabbit model 923.1 Introduction 923.2 Materials and methods 963.2.1 Preparation and Characterization of the 3D bioceramic scaffold by DLP method 963.2.2 Cell isolation and culture 973.2.3 Fabrication of the cell-laden

hydrogel/ 3D bioceramic scaffolds mimicking the Osteochondral tissue. 983.2.4 Surgery 983.2.5 Macroscopic Examination 993.2.6 Tissue Processing for paraffin block 993.2.7 Histological and Immunohistochemical Evaluation 1003.2.8 Masson’s trichrome stain 1013.3 Results and discussion 1023.3.1 C

haracterization of the 3D bioceramic scaffold by DLP method 1023.3.2 Fabrication of the hydrogel with hADSCs into the 3D bioceramic scaffold 1043.3.3 In-vivo studies using rabbit as an animal model 1053.3.5 Histological evaluation of neocartilage formation 1073.3.6 Masson’s trichrome staining an

alysis for neocartilage formation 1093.4. Conclusion 110Chapter four 1104.1 General discussion 1124.2 Future work 1134.2.1 Macroscopic Observation of neocartilage formation for 8 weeks 1145.Reference 115

Brain Tumors

為了解決Ex vivo in vitro的問題,作者 這樣論述:

Series Preface...Acknowledgements...Preface...Table of Contents...Contributing Authors...Part I In Vivo Models1. Mouse Models of Diffuse Lower-Grade Gliomas of the AdultSofia Archontidi, Sandra Joppé, Yanis Khenniche, Chiara Bardella, and Emmanuelle Huillard2. In Vivo Medulloblastoma ModelingLili

ana Mirabal-Ortega, Magalie Larcher, Morgane Morabito, Chloé Foray, Bertrand Duvillié, Alain Eychène, and Celio Pouponnot3. In Vivo Models of Brain MetastasesChristina S. Wong 4. Intravital Imaging of Brain TumorsCathy Pichol-Thievend, Boris Julien, Océane Anézo, Beatrice Philip, and Giorgio SeanoPa

rt II Ex Vivo Models5. Glioblastoma Patient-Derived Cell Lines: Generation of Non-Adherent Cellular Models from Brain TumorsJoris Guyon, Tiffanie Chouleur, Andreas Bikfalvi, and Thomas Daubon6. Organotypic Brain Cultures for Metastasis ResearchLucía Zhu and Manuel Valiente7. Human Glioblastoma Organ

oids to Model Brain Tumor Heterogeneity Ex VivoW. Dean Pontius, Lisa C. Wallace, Katrina Fife, and Christopher G. Hubert8. In Vitro Mechanobiology of Glioma: Mimicking the Brain Blood Vessels and White Matter Tracks Invasion PathsPascale Monzo, Michele Crestani, and Nils C. GauthierPart III Treatmen

ts in Mice9. Assessing Neurological Function in Brain Tumor Mouse ModelXing Gao, Limeng Wu, Raquel D. Thalheimer, Jie Chen, Yao Sun, Grace Y. Lee, Scott R. Plotkin, and Lei Xu10. Dynamic Immunotherapy Study in Brain Tumor-Bearing MiceLuiz Henrique Medeiros Geraldo, Yunling Xu, and Thomas Mathivet 11

. Experimental and Preclinical Tools to Explore the Main Neurological Impacts of Brain Irradiation: Current Insights and PerspectivesLaura Mouton, Monica Ribeiro, Fawzi Boumezbeur, Denis Le Bihan, Marc-André Mouthon, Damien Ricard, François Boussin, and Pierre VerrellePart IV Clinical Imaging12. Mec

hano-Biological Features in the Patient-Specific Computational Model of GlioblastomaFrancesco Acerbi, Abramo Agosti, Jacopo Falco, Stefano Marchesi, Ignazio G. Vetrano, Francesco DiMeco, Alberto Bizzi, Paolo Ferroli, Giorgio Scita, and Pasquale Ciarletta 13. Magnetic Resonance Imaging for Quantifica

tion of Brain Vascular PerfusionLine Brennhaug Nilsen and Kyrre Eeg Emblem14. MRI Morphometry in Brain Tumors: Challenges and Opportunities in Expert, Radiomic, and Deep-Learning Based AnalysesMarco C. Pinho, Pallavi Tiwari, Kaustav Bera, and Niha BeigSubject Index List...

靈芝水萃液於肉雞發炎模式下對生長性能、腸道型態及盲腸菌相之影響

為了解決Ex vivo in vitro的問題,作者莊凱博 這樣論述:

靈芝(Ganoderma lucidum)在過去亞洲地區的傳統文化中就已經被當中藥材廣泛使用在治療或是預防疾病的發生,由於靈芝中的多醣體已被證實具有調節免疫力、抗發炎、抗氧化、抗癌和抗菌等功能,因此本試驗將探討靈芝水萃液作為肉雞抗發炎的飼料添加物之功效。本研究分為三個試驗,試驗一目的為測定靈芝的體外抗菌效果及生物活性成分的定量,試驗二是使用葡聚醣硫酸鈉(dextran sulfate sodium, DSS)作為肉雞促發炎藥物並測試靈芝水萃液對生長性能、腸道型態、抗發炎效果及腸道菌相的影響,試驗三使用脂多醣(lipopolysaccharide, LPS)誘導肉雞發炎並觀察靈芝水萃液對生長性

能、腸道型態、抗發炎效果及腸道菌相的功能。試驗結果顯示,靈芝水對金黃色葡萄球菌及大腸桿菌具有抑菌效果,此外,在兩種攻毒模式中靈芝水萃液都無法改善其生長性能,但在腸道的發炎基因(COX2、iNOS、IL-1β和IL-6) mRNA表現量皆有抑制的效果;在DSS攻毒的試驗中靈芝無法提高小腸的絨毛長度,但在LPS試驗中靈芝水萃液的高低劑量處理和對照組相比都顯著提高空腸和迴腸的絨毛長度;試驗二的腸道菌相豐富度會因為給予靈芝水萃液而顯著提高,並且抑制了變形菌門的比例,試驗三的結果則是可以發現給予高劑量靈芝水萃液處理會使alpha diversity中的simpson和shannon下降,腸道內乳酸桿菌的

數量相對上升,原本因為LPS攻毒而下降的糞桿菌也恢復成和對照組一樣的水平。綜合上述,靈芝水萃液無論是在DSS或是LPS攻毒皆具有抑制發炎反應的效果,並促進腸道內有益菌的含量,且幫助腸道菌群穩定,在LPS試驗中也能提高絨毛長度增加吸收面積,因此靈芝水萃液具有作為抗發炎飼料添加物的潛力。