A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://api.kolvoice.com/es/query_keyword.php?k=D POINT HAPPY GO&t=hie): failed to open stream: HTTP request failed! HTTP/1.1 400 Bad Request

Filename: models/Site_model.php

Line Number: 536

Backtrace:

File: /var/www/html/prints/application/models/Site_model.php
Line: 536
Function: file_get_contents

File: /var/www/html/prints/application/models/Site_model.php
Line: 296
Function: get_kwData

File: /var/www/html/prints/application/controllers/Pages.php
Line: 629
Function: get_keyword_tree

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

D POINT HAPPY GO的問題找圖書和論文來找解法和答案更準確安心。,我們都能我們找到下列免費下載的地點或者是各式教學

D POINT HAPPY GO的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

D POINT HAPPY GO的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦清水建二,すずきひろし寫的 字首&字根 連鎖記憶法,英文單字語源圖鑑 和Menches, E. a.的 Le Tomcat Diaries: Lies, Fries, and Blue Skies in the South of France都 可以從中找到所需的評價。

這兩本書分別來自采實文化 和所出版 。

南臺科技大學 商管學院全球經營管理碩士班 洪崇文所指導 王宇萱的 產業結合紅利點數平台對消費者影響之研究探討 (2021),提出D POINT HAPPY GO關鍵因素是什麼,來自於跨產業紅利點數交換平台、使用者忠誠度、購買意圖、社交媒體營銷活動、結構方程模型。

而第二篇論文長庚大學 電子工程學系 賴朝松所指導 Mamina Sahoo的 基於石墨烯及生物碳基材料的可撓式電晶體應用與能量攫取 (2021),提出因為有 石墨烯、氟化石墨烯、太阳能电池、摩擦纳米发电机、生物碳、能量收集器的重點而找出了 D POINT HAPPY GO的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了D POINT HAPPY GO,大家也想知道這些:

字首&字根 連鎖記憶法,英文單字語源圖鑑

為了解決D POINT HAPPY GO的問題,作者清水建二,すずきひろし 這樣論述:

  ★英文學習者的第一本革命性入門語源單字書   ★著作累積銷售超過200萬冊、《英文單字語源圖鑑》作者清水建二最新作   ★不用死背!學生、上班族、初學者的必備單字大全!    ★語源解說+圖像輔助,讓背英語變得事半功倍,不再只是學半套!     為什麼英語單字老是背不起來?   英語單字,如果總是一個字一個字分開來背,   很容易背了又忘記、忘記了再背,沒效率又會打擊學習信心!     其實,每個英語單字都是一個「有意義的組合」,   只要先了解單字當中的【字首、字根、字尾】語源的意思,   讓每個單字有系統地在腦海中串起關聯性,   只要

背一個語源,就能連鎖記得同語源的其他5個單字。   未來即使是不認識的字,也能猜出意思,連鎖背起超過10,000個單字!      百萬暢銷作者清水建二和英語教學名師すずき ひろし再度聯手打造   一本更基礎、更必要的語源單字書!   無論是「準備檢定」、「升學考試」的學生,或是想「重新學英文」的社會人士,   本書都能協助打穩基礎,讓讀者的英語學習力大大改善,   擁有跟母語人士一樣的單字力。     ◎收錄最基礎的41個字首╳126個字根,初學者也學得會!      一般語源學習書收錄的多半是比較困難的單字,只適合有一定字彙能力的人閱讀。   

本書著眼於這一點,以art、ball、car、cap這類每個人大多都認識的單字為例,   編寫出一本即使是英語程度初級者也能理解的語源學習書,   涵蓋國中程度每個人都必須知道的基本單字,   每則字首、字根、單字皆有附語源涵義,由淺入深,鍛造讀者實力。      ◎獨創圖像不無聊,單字意思從此一目了然!     背單字的時候,就是要將情境替換成自己的生活來思考,   透過「圖像」,能讓單字在心裡多加上一層「具體」印象,   而不會是對我們來說毫無感覺的東西。     本書根據語源,用獨創插圖把單字的抽象意思表現出來,   特別設計貓、烏龜、老鼠等

生動角色,既趣味又可愛。   讀者可以一邊背單字,一邊參照插圖模擬自己的身體或行動,   藉由想像力來真實體會,就能將意思深深刻在心中,   從此背單字不再只是背半套!   名人推薦     浩爾/會走路的翻譯機   許皓/知名企訓講師、作家   JK/IG英語圖卡教學「JK English」版主   好評推薦     十多年的研究與講席,個人在兩岸也出了字源學相關形音義、字根首尾和字源學心智圖的記憶專書。特別推薦此書字源的歸類整理與輕鬆的巧記法,在推廣字源學上是有趣易讀,引發學習的好書。──許皓/知名企訓講師、作家

D POINT HAPPY GO進入發燒排行的影片

► Use my code: "EDWARDZO" for 30% off: https://geolog.ie/edward-zo
► open below for IMPORTANT details!

C O M M E N T:
► what skincare insecurities or flaws do you have that you'd like help on?

F E A T U R E D:
► geologie skincare: Use my code: "EDWARDZO" for 30% off: https://geolog.ie/edward-zo

A B O U T:
► I suffer from eczema, skin sensitivity & at one point had really bad acne. It's caused me a lot of anguish, but through diligent skincare research & knowledge I've learned how to present myself to society as someone with "nice skin" but it takes a lot of maintenance, I need to stick to a good routine otherwise things will go haywire. You can't cure eczema, but you can learn to control it. Same thing with acne. I will for the most part always have sensitive acne prone skin, but through lifestyle changes and a good routine i can keep things under control. How about you? Do you have any skincare insecurities you'd like to share?

C O N N E C T:
►all my links: http://linktr.ee/edwardzo

By the way, if you are new to this channel:
► My name is Edward ZO, I'm an artist, entrepreneur & lifestyle guru based in Los Angeles, CA. I'm so happy you are actually taking the time to read this : My channel is all about self improvement and helping you become the best version of yourself! We cover a wide range of topics from men's hair, lifestyle, self improvement, fitness, social issues and much more. If you are reading this click here: http://linktr.ee/edwardzo to check out all my projects

產業結合紅利點數平台對消費者影響之研究探討

為了解決D POINT HAPPY GO的問題,作者王宇萱 這樣論述:

隨著網際網路技術的發展,消費者可以在網上購買商品使用智能手機應用程式和其他移動設備,無需走出家門。為了吸引更多的消費者購買商品,企業推出了虛擬積分,為消費者提供收集積分、增加再次購物和培養忠誠度的意願,在不影響降價競爭的情況下,讓虛擬積分成為一種市場上的潛力商機。隨著越來越多的虛擬積分平台競爭者迅速增加,對於企業和消費者來說,只有虛擬積分平台已經無法吸引更多的商機,為了創造更多的商機,許多公司開始通過跨行業聯盟進行營銷。本研究為了了解在台灣的消費者實際使用跨行業虛擬積分兌換平台,因此本研究探討其發展潛力和關鍵影響因素。因此,本研究通過以下方式擴展了信息系統 (IS) 連續性模型將用戶滿意度作

為中介,並添加幾個結構(用戶界面,社交媒體營銷活動、感知價值、購買意願、用戶忠誠度和持續意向)建立一個全面的框架來了解跨行業積分交換平台對客戶的影響。對 322 名使用過獎勵積分平台受訪者,透過GOOGLE表單調查並使用結構方程模型(SEM)用於路徑分析和假設檢驗。令人驚訝的是,研究表明,感知易用性 (PEOU) 和感知有用性(PU)對用戶滿意度沒有顯著影響,但感知易用性對用戶滿意度有顯著且直接影響感知有用性;用戶界面對購買意向有重大影響通過用戶滿意度中介、用戶忠誠度和持續意向;通過社交媒體營銷活動方式對用戶滿意度產生顯著影響感知價值的中介作用,感知價值對購買有顯著影響意向、用戶忠誠度和持續意

向通過用戶滿意度的中介作用。

Le Tomcat Diaries: Lies, Fries, and Blue Skies in the South of France

為了解決D POINT HAPPY GO的問題,作者Menches, E. a. 這樣論述:

For cat lovers and those Peter Mayle and Stephen Clarke fans who dream of moving to the South of France: Mr. Blinkers is not happy about emigrating to the South of France with Hans and Victoria, though he has been promised fountains of tuna. He should have known it was all a ploy. A British tabby ca

t knows better than to expect paradise in a foreign country. His point is duly proven when the Provencal villa that they move into turns out to be a disaster. From the moment the dubious, perfume-laden vendors arrive, things go south for the family. A perceptive tabby with incomparable skills of ded

uction, Mr Blinkers is set on a journey to discovering all the aches and pains of the villa, while Hans and Victoria try to recover their losses. At the same time he is adrift in a new place, and not a very nice one. Follow Mr. Blinkers as his humans survive in the Provencal villa, and he meets his

lifelong love Roe, while floods threaten to wash away his favourite sleeping spot. Blinkers will come face to face with Jinx, a one-eared tomcat who terrorizes the street, HIS street. As Blinkers helps his humans navigate the treacherous French property market, a revenge plot unfolds involving a yap

py poodle, the earless shadow cat and a very long, very slippy slide. In the end who knows what lessons Blinkers may pass onto his humans, in his endless quest for more attention, more power, and more tuna. Join Mr. Blinkers in Le Tomcat Diaries and discover how NOT to invest in the French property

market. Tags: Cat gifts for cat lovers, cat lovers gifts, cat lover gifts, cat lover coffee mug, gifts for cat lovers, cat books, books about cats, cat books for kids, big cats book, cat picture book, pete the cat books, bad cat book, cats kids book, cat daddy book, free cat books, warrior cats book

s, cat books funny, cat who books, french riviera, cote d azur, nice france, south france, south of france, mediterranean, mediterranean sea, mediterranean cruise ports, paul through mediterranean eyes, a place in the sun, tim mcgraw a place in the sun, driving over lemons, The World According to Bo

b, james bowen, peter mayle, peter mayle books, french lessons peter mayle, stephen clarke, chris stewart, chris stewart books, year provence, a year in provence, bon courage, tout sweet. E.A. Menches is the daughter of a Sales office Manager of an international company and a French Grammar School

teacher whom the kids fondly nicknamed ’the dragon’. As a young child Menches started visiting France for family holidays and loved walking round the flea markets in Uzès. She has fond memories of the stone house they stayed in and swimming in the river. By age 12, she had started her French lesson

s, and went on to complete a degree in French and German, followed by a Post Grad in European Business Management. She used to have a flourishing translation agency which has now progressed to an international marketing agency. Her latest business offers an A-Z property search and relocation service

for humans who are not on the ground, can’t search for properties effectively in a weekend and, don`t know the local business culture, ethics (or often lack of). She wants to help them avoid just getting blown away by the beauty of the place like she did. In 1998, while in Nice, France at a busines

s meeting, she walked across the Place Massena (Main Square in Nice) and fell in love with the place. When asked by her employer at that that time if she envisaged working for them for a long time, she boldly told them, ’Yes if you send me to Nice’. Menches says she was fulfilling her dream of livin

g in France, but it turned into one big nightmare. However, despite 13 years in court she still has many great and funny memories.

基於石墨烯及生物碳基材料的可撓式電晶體應用與能量攫取

為了解決D POINT HAPPY GO的問題,作者Mamina Sahoo 這樣論述:

Table of ContentsAbstract.......................................................................................................iFigure Captions........................................................................................xiTable Captions...................................................

....................................xxiChapter 1: Introduction1.1 Flexible electronics................................................................................11.2 Graphene the magical material ………………………….……….......21.2.1 Synthesis of graphene…………………………….….…...21.2.1.1 Mechanical exfoliati

on of graphene………………...……21.2.1.2 Epitaxial growth on Sic substrate………………….…..31.2.1.3 Chemical vapor deposition (CVD) method………….…..41.2.2 Graphene transfer…………………………………………....41.3 Application of graphene based Electronics……………………….......51.3.1 Graphene based flexible transparent electrode

……………….61.3.2 Top gated Graphene field effect transistor…………………….71.4 Challenges of flexible graphene based field effect transistors.……….91.5 Energy harvesting devices for flexible electronics………….........….91.6 Solar cell…………………………………………………………...101.6.1 Device architecture…………………………………………101.

6.2 Issues and Challenges of Perovskite solar cells………...121.7 Triboelectric nanogenerator (TENG)………………………………121.7.1 Working mode of TENG………………………………….141.8 Applications of TENG………………………………………………151.8.1 Applications of graphene based TENG…………………....151.8.2 Applications of bio-waste material ba

sed TENG………….171.9 Key challenges of triboelectric nanogenerator…………………....…191.10 Objective and scope of this study………………………………....19Chapter 2: Flexible graphene field effect transistor with fluorinated graphene as gate dielectric2.1 Introduction………………………………………………………....212.2 Material preparation a

nd Device fabrication………………. 232.2.1CVD Growth of Graphene on Copper Foil………………….232.2.2 Transfer of graphene over PET substrate……………...........252.2.3 Fabrication of fluorinated graphene ……………...........252.2.4 F-GFETs with FG as gate dielectric device fabrication……262.2.5 Material and electrical C

haracterization …………………272.3 Results and discussion…………………………………………….282.3.1 Material characterization of PG and FG……………...…...….282.3.2 Electrical characterization of F-GFET with FG as dielectrics..332.3.3 Mechanical stability test of F-GFET with FG as dielectrics ….362.4 Summary…………………………………………………

………....40Chapter 3: Robust sandwiched fluorinated graphene for highly reliable flexible electronics3.1 Introduction………………………………………………………….423.2 Material preparation and Device fabrication ………………….........443.2.1 CVD Growth of Graphene on Copper Foil…………………...443.2.2 Graphene fluorination …...…….…………

…………..............443.2.3 F-GFETs with sandwiched FG device fabrication....................443.2.4 Material and electrical Characterization…..............................453.3 Results and discussion ……………………………………...............453.3.1 Material characterization of sandwiched…………………….453.3.2 Electric

al characterization of F-GFET with sandwiched FG....473.3.3 Mechanical stability test of F-GFET with sandwiched FG…503.3.4 Strain transfer mechanism of sandwiched FG………………513.4 Summary…………………………………………………………....53Chapter 4: Functionalized fluorinated graphene as a novel hole transporting layer for ef

ficient inverted perovskite solar cells4.1 Introduction………………………………………………………….544.2 Material preparation and Device fabrication......................................564.2.1 Materials ………………………...…………………………564.2.2 CVD-Graphene growth ……………………………...…...564.2.3 Graphene fluorination …………………………………….564.

2.4 Transfer of fluorinated graphene…………………………...574.2.5 Device fabrication …………………………………….….574.2.6 Material and electrical Characterization …….....................584.3 Results and discussion …………………………………………….594.3.1 Surface electronic and optical properties of FGr……….….594.3.2 Characterization o

f FGr and perovskite surface ……….…644.3.3 Electrical performance of PSC………………….…….…...694.3.4 Electrical performance of Flexible PSC……………………724.4 Summary…………………………………………………………...78Chapter 5: Flexible layered-graphene charge modulation for highly stable triboelectric nanogenerator5.1 Introduction…………

…………………………………………....795.2 Experimental Section……………………………………………….825.2.1 Large-area graphene growth ……………………………….825.2.2 Fabrication of Al2O3 as the CTL …………………………...825.2.3 Fabrication of a Gr-TENG with Al2O3 as the CTL………825.2.4 Material characterization and electrical measurements…….835.3 Results

and discussion.…………………………………...…………845.3.1 Material Characterization of Graphene Layers/Al2O3……845.3.2 Working Mechanism of Gr-TENG with Al2O3 as CTL…915.3.3 Electrical Characterization of Gr-TENG with Al2O3 CTL…945.3.4 Applications of the Gr-TENG with Al2O3 as CTL……….1015.4 Summary…………………………………………

……………….103Chapter 6: Eco-friendly Spent coffee ground bio-TENG for high performance flexible energy harvester6.1 Introduction…………………………………………………….......1046.2 Experimental Section…………………………………………….1086.2.1 Material Preparation …………………………………….1086.2.2 Fabrication of SCG powder based TENG………………...1086

.2.3 Fabrication of SCG thin-film based TENG ………………1096.2.4 Material characterization and electrical measurements….1106.3 Results and discussion.…………………………………...………1116.3.1 Material Characterization of SCG powder and thin film….1116.3.2 Working Mechanism of SCG-TENG……………………...1186.3.3 Electrical Cha

racterization of SCG-TENG……………….1226.3.4 Applications of the SCG thin-film based TENG………….1326.4 Summary………………………………………………………….134Chapter 7: Conclusions and future perspectives7.1 Conclusion………………………………………………………....1357.2 Future work …………………………….………………………….1377.2.1 Overview of flexible fluorinated g

raphene TENG..............1377.2.1.1 Initial results………………………………….…1387.2.2.1.1 Fabrication of FG-TENG………………1387.2.2.1.2 Working principle of FG-TENG……….1397.2.2.1.3 Electrical output of FG-TENG.………...140References…………………………………………………………….142Appendix A: List of publications………………….……………..........177A

ppendix B: Fabrication process of GFETs with fluorinated graphene (FG) as gate dielectric……........……………………………………….179Appendix C: Fabrication process of GFETs with sandwiched FG…....180Appendix D: Fabrication process of inverted perovskite solar cell with FGr as HTL…………………………………………………………….181Appendi

x E: Fabrication of a Gr-TENG with Al2O3 as the CTL…….182Appendix F: Fabrication of SCG based triboelectric nanogenerator….183Figure captionsFigure 1-1 Exfoliated graphene on SiO2/Si wafer……………………….3Figure 1-2 Epitaxial graphene growth on SiC substrate………………....3Figure 1-3 Growth mechanism of graphe

ne on Cu foil by CVD ……......4Figure 1-4 Wet transfer process of CVD grown graphene…………...….5Figure 1-5 RGO/PET based electrodes as a flexible touch screen.……....6Figure 1-6 Graphene based (a) touch panel (b) touch-screen phone…….7Figure 1-7 Flexible graphene transistors (a) (Top) Optical photograph

of an array of flexible, self-aligned GFETs on PET. (Bottom) The corresponding schematic shows a device layout. (b) Schematic cross-sectional and top views of top-gated graphene flake–based gigahertz transistors. (Left) AFM image of a graphene flake. (Right) Photograph of flexible graphene devices

fabricated on a PI substrate. (c) Cross-sectional schematic of flexible GFETs fabricated using a self-aligned process……8Figure 1-8 The magnitude of power needed for meet certain operation depending critically on the scale and applications………………………10Figure 1-9 Schematic diagrams of PSC in the (a) n-i

-p mesoscopic, (b) n-i-p planar, (c) p-i-n planar, and (d) p-i-n mesoscopic structures………...12Figure 1-10 Schematic illustration of the first TENG...………………...13Figure 1-11 Working modes of the TENG. (a) The vertical contact-separation mode. (b) The lateral sliding mode. (c) The single-electrode mode

. (d) The free-standing mode ………………………………...……14Figure 1-12 Schematic illustration of (a) device fabrication of graphene-based TENGs (b) graphene/EVA/PET-based triboelectric nanogenerators (c) device fabrication of stretchable CG based TENG with electrical output performance……………………………………………………...17

Figure 1-13 Schematic illustration and output performance of bio-waste material based TENG (a) Rice-husk (b) Tea leaves (c) Sun flower powder (SFP) (d) Wheat stalk based TENG………….…………………………18Figure 2-1 Graphene synthesis by LPCVD method……….…………...24Figure 2-2 Schematic diagram of (a) preparation pro

cess of 1L-FG/copper foil (b) Layer by layer assembly method was used for fabricating three-layer graphene over copper foil and then CF4 plasma treatment from top side to form 3L-FG/copper foil…………………….26Figure 2-3 Schematic illustration of fabrication process of F-GFET with FG as gate dielectric ……

……………………………………………….27Figure 2-4 (a) Raman spectra of PG, 1L-FG and 3L-FG after 30 min of CF4 plasma treatment over copper foil. (b) Peak intensities ratio ID/IG and optical transmittance of PG, 1L-FG and 3L-FG. Inset: image of PG and 1L-FG film over PET substrate. (c) Typical Raman spectra of PG, 1L

-FG and 3L-FG on PET substrate. (d) Optical transmittance of PG, 1L-FG and 3L-FG film over PET substrate. The inset shows the optical image of GFETs with FG as gate dielectrics on PET ……….…………30Figure 2-5 XPS analysis result of (a) PG (b) 1L-FG (c) 3L-FG where the C1s core level and several carbon f

luorine components are labeled. The inset shows the fluorine peak (F 1s) at 688.5 eV……………………….32Figure 2-6 (a) Water contact angle of PG, 1L-FG and 3L-FG over PET substrate. (b) The relationship between water contact angle of PG, 1L-FG and 3L-FG and surface-roughness………………………………………33Figure 2-7 (a) I

d vs. Vd of w/o-FG, w/1L-FG and w/3L-FG samples after 30 min of CF4 plasma (b) Id vs. Vg of w/o-FG, w/1L-FG and w/3L-FG samples at a fixed value of drain to source voltage, Vds of 0.5 V (c) Gate capacitance of w/o-FG, w/1L-FG and w/3L-FG samples (d) Gate leakage current of w/o-FG (naturally formed A

l2OX as gate dielectric), w/1L-FG and w/3L-FG samples ……………………………...…………...……...34Figure 2-8 (a) Schematic illustration of bending measurement setup at different bending radius. (i) Device measurement at (i) flat condition (ii) bending radius of 10 mm (iii) 8 mm (iv) 6 mm. Inset shows the photograph

of measurement setup. Change in (b) carrier mobility (c) ION of w/o-FG, w/1L-FG and w/3L-FG samples as a function of bending radius. The symbol ∞ represents the flat condition. Change in (d) carrier mobility (e) ION of w/o-FG, w/1L-FG and w/3L-FG samples as a function of bending cycles (Strain = 1.

56%)…………………………………….38Figure 3-1 Schematic illustration of the flexible top gate graphene field effect transistor with sandwich fluorinated graphene (FG as gate dielectric and substrate passivation layer) ……………………………...…………44Figure 3-2 Raman spectra of (a) PG/PET and PG/FG/PET substrate (b) sandwiche

d FG (FG/PG/FG/PET). Inset showing the optical transmittance of sandwiched FG. (c) HRTEM image for 1L-FG.……………….….…46Figure 3-3 (a) Id vs. Vd of FG/PG/FG device at variable vg (−2 to 2 V). (b) Id vs. Vg of FG/PG/FG. (c) Gate capacitance of FG/PG/FG ….…….48Figure 3-4 Raman spectra of devices under be

nding (a) PG/PET (Inset shows the 2D peak) (b) PG/FG/PET (inset shows the 2D peak) …….…49Figure 3-5 (a) Change in Mobility (b) change in ION of PG/PET and PG/FG/PET as a function of bending radius between bending radii of ∞ to 1.6 mm in tensile mode (c) Change in Mobility (d) Change in ION of PG/PET

and PG/FG/PET as a function of bending cycles. Inset of (c) shows the photograph of F-GFETs with sandwich FG on the PET substrate (e) change in resistance of w/1L-FG, 1L-FG/PG/1L-FG samples as a function of bending radius ………………………...……………….50Figure 3-6 Schematic evolution of proposed strain transf

er mechanism through PG/PET and PG/FG/PET. The inset of PG/PET sample shows the generation of sliding charge due to interfacial sliding between PG and PET ………………………………………………………………….….52Figure 4-1 FGr fabrication and transfer process …………….………....57Figure 4-2 (a) Raman analysis of pristine graphene a

nd the FGr samples after 5, 10, 20, and 30 min of CF4 plasma treatment over Cu foil (b) Raman intensity ratios (I2D/IG and ID/IG) of fluorinated graphene, with respect to the exposure time ……………………………………………60Figure 4-3 SEM images of (a) ITO, (b) ITO/1L-FGr, (c) ITO/2L-FGr, and (d) ITO/3L-FGr …………………

………………………………….61Figure 4-4 XPS analysis of FGr with (a) 5 min (b) 10 min and (c) 20 min of CF4 plasma treatment on the Cu foil (d) The fluorine peak (F1s) of FGr (f) The correlation of the carbon-to-fluorine fraction (C/F) with exposure time and the corresponding carrier concentrations …………….………62Fi

gure 4-5 Tauc plots and UV–Vis absorption spectra of FGr films with CF4 plasma treatment for (a) 5, (b) 10, and (c) 20 min ….………......….63Figure 4-6 WCAs on PEDOT: PSS and 1L, 2L, and 3L FGr samples ...64Figure 4-7 (a) Mechanism of large grain growth of perovskite on a non-wetting surface (b) Top-vi

ew and cross-sectional surface morphologies of perovskites on various HTLs ………………………………...…………65Figure 4-8 XRD of perovskite films on various HTL substrates ….…...66Figure 4-9 UPS spectra of various numbers of FGr layers on ITO: (a) cut-off and (b) valance band spectra …………………………………….….67Figure 4-10

Energy band diagrams of PSCs with (a) PEDOT: PSS, (b) 1L-FGr, (c) 2L-FGr, and (d) 3L-FGr as HTL …………………….…….68Figure 4-11 (a) Steady state PL spectra of PEDOT: PSS/perovskite and FGr/perovskite films. (b) TRPL spectral decay of PEDOT: PSS/perovskite and FGr/perovskite films………………………….……69Figure 4-1

2 (a) Schematic representation of a PSC having an inverted device configuration. (b) Cross-sectional HRTEM image of the ITO/ FGr–perovskite interface………………………………………...………70Figure 4-13 Photovoltaic parameters of PSCs incorporating various HTL substrates: (a) PCE (%), (b) Voc (V), (c) Jsc (mA/cm2), an

d (d) FF (%)....71Figure 4-14 Normalized PCEs of target and control PSCs incorporating various HTL substrates, measured in a N2-filled glove box. (a) Thermal stability at 60 °C (b) Light soaking effect under 1 Sun (c) Stability after several days …………………………………………………………….72Figure 4-15 (a) Schematic r

epresentation of the structure of a flexible PSC on a PET substrate (b) J–V curves of control and target flexible PSCs, measured under both forward and reverse biases. (c) Average PCE of flexible PSCs incorporating PEDOT: PSS and FGr HTLs……….…73Figure 4-16 (a) Normalized averaged PCEs of the flexibl

e PSCs after bending for 10 cycles at various bending radii. (b) Normalized averaged PCEs of the flexible PSCs plotted with respect to the number of bending cycles at a radius of 6 mm ………………………………………………75Figure 4-17 Photovoltaics parameters of flexible PSCs with various HTL substrates: (a) JSC (mA/c

m2), (b) Voc (V), and (c) FF (%) ……………....75Figure 4-18 XRD patterns of perovskite films on PET/ITO/FGr, recorded before and after bending 500 times …………………………………….76Figure 4-19 SEM images of (a) perovskite films/FGr/ITO/PET before bending (b) after bending 500 times (c) perovskite films/PEDOT: PSS/

ITO/PET before bending (d) after bending 500 times ……………….…77Figure 4-20 PL spectra of perovskite films on PET/ITO/FGr, recorded before and after various bending cycles …………………………….…78Figure 5-1 Schematic illustration showing the fabrication process of a flexible Gr-TENG with Al2O3 as the CTL ……………

………………...83Figure 5-2 The Raman spectra of (a) graphene/Al-foil/PET and (b) graphene/Al2O3/Al-foil/PET. The I2D/IG of graphene layers (1L, 3L and 5L) over (c) Al-foil/PET substrate (d) Al2O3/Al-foil/PET substrate …...85Figure 5-3 XRD patterns of (a) graphene/Al-foil/PET and (b) graphene/Al2O3/Al-foi

l/PET ……………………………………………86Figure 5-4 FESEM image of the graphene surface on (a) Al-foil/PET and (b) Al2O3/Al-foil/PET. EDS analysis of (c) graphene/Al-foil/PET and (d) graphene/Al2O3/Al-foil/PET (e) EDS elemental mapping of the graphene/Al2O3/Al-foil/PET presenting C K series, O K series and Al K ser

ies …………………………………………………………….………87Figure 5-5 3D AFM images of (a) 1L-Gr (b) 3L-Gr (c) 5L-Gr on Al foil (d) 1L-Gr (e) 3L-Gr (f) 5L-Gr on Al2O3/Al foil………………….….….89Figure 5-6 Work function of graphene layers on the (a) Al-foil (b) Al2O3/Al-foil substrate by KPFM. Inset showing the surface potential of

graphene layers (1L, 3L and 5L) over Al-foil and Al2O3 substrate (c) energy band diagrams for 1L-Gr, 3L-Gr and 5L-Gr over Al2O3 ……....90Figure 5-7 Schematic illustration of Electronic energy levels of graphene samples and AFM tip without and with electrical contact for three cases: (i) tip and the

1L-Gr (ii) tip and the 3L-Gr and (iii) tip and the 5L-Gr over Al2O3/Al foil/PET……………………………………….…...…………91Figure 5-8 Working mechanism of Gr-TENG with Al2O3 ….….…...…93Figure 5-9 a) ISC and (b) VOC of 1L-, 3L- and 5L-Gr-TENGs without Al2O3 CTL (c) Sheet resistance of graphene as a function of number

of layers ………………………………...…...…………………………….95Figure 5-10 Electrical output of the Gr-TENG with Al2O3 CTL: (a) ISC and (b) VOC of 1L-, 3L- and 5L-Gr. Magnification of the (c) ISC and (d) VOC of the 3L-Gr-TENG with Al2O3 as the CTL. Average mean (e) ISC and (f) VOC generated by pristine Gr-TENGs (1L, 3L

and 5L) and Gr-TENGs (1L, 3L and 5L) with Al2O3 CTL. Error bars indicate standard deviations for 4 sets of data points ……………...…………….….…......96Figure 5-11 (a) CV of Al/Al2O3/3L-Gr/Al at 100 kHz and 1 MHz (b) CV hysteresis of 3L-Gr-TENG with Al2O3 as CTL with different sweeping voltages (c) Surface

charge density of graphene (1L, 3L and 5L)-based TENG with and without Al2O3 as CTL ………………………………...98Figure 5-12 Circuit diagram of output (a) VOC and (b) ISC measurement of 3L-Gr TENG with Al2O3 CTL as a function of different resistors as external loads. Variation in VOC and ISC w.r.t different re

sistors as external loads of (c) 3L-Gr TENG with Al2O3 CTL (d) 3L-Gr TENG without Al2O3 CTL. Relationship between electrical output power and external loading resistance (e) 3L-Gr TENG with Al2O3 CTL (f) 3L-Gr TENG without Al2O3 CTL…………………………………….………………...99Figure 5-13 (a)Electrical stability and du

rability of the 3L-Gr TENG with Al2O3 (b) Schematic illustrations showing the charge-trapping mechanism of 3L-Gr-TENG without and with Al2O3 charge trapping layer ………101Figure 5-14 (a) Photograph showing 20 LEDs being powered (b) Circuit diagram of bridge rectifier (c) Charging curves of capacitors

with various capacitances (d) Photograph of powering a timer …….………………102Figure 6-1 The schematic diagram of the fabrication process for SCG powder based TENG ……………………………………………….….108Figure 6-2 The schematic diagram of the fabrication process for SCG thin-film based TENG via thermal evaporation meth

od ………………109Figure 6-3 FESEM image of (a) SCG powder (inset image illustrates the high magnification of SCG powder) (b) SCG thin-film/Al foil/PET (inset image illustrates the high magnification of SCG thin-film). EDS of the (c) SCG powder (d) SCG thin-film/Al foil/PET…………………………. 112Figure 6-4 Raman

spectra analysis (a) pristine SCG powder (b) SCG thin-film/Al foil/PET. XRD patterns of (c) SCG powder (d) SCG thin film with different thickness ……………………………………… ……….115Figure 6-5 FTIR analysis of the (a) pristine SCG powder sample (b) SCG thin film………………………………………………………………...116Figure 6-6 3D AFM ima

ge of SCG thin-film with various thickness (a) 50 nm (b)100 nm and (c) 200 nm……………………………………...117Figure 6-7 Schematic illustration of working principle of SCG thin-film based TENG …………………………………………………………...119Figure 6-8 Finite element simulation of the generated voltage difference for SCG thin-film b

ased TENG based on the contact and separation between SCG thin film and PTFE …………….……………………….120Figure 6-9 (a) The setup for electrical property testing, which including a Keithley 6514 system electrometer and linear motor. Electrical output (b) ISC (c) VOC of TENGs based on different friction pairs

for checking the triboelectric polarity of SCG…………………………………………...123Figure 6-10 Electrical measurement of (a) ISC and (b) VOC of the SCG thin-film based TENG. Mean value of (d) ISC (e) VOC and (f) Output power density of the pristine SCG powder and thermal deposited SCG thin-film based TENG. ...………

………………………………………125Figure 6-11 (a) Schematic illustration of KPFM for measuring the work function. (b) Surface potential images of SCG thin film with various thickness (50 nm, 100 nm and 200 nm). (c) Surface potential and (d) Work function vs SCG thin film with various thickness (50 nm, 100 nm and 20

0 nm).………….……………………………………………….128Figure 6-12 (a) Isc and (b) Voc of SCG thin film based TENG under different contact frequencies (c) Isc and (d) Voc of SCG thin film based TENG under different separation distance…………………………….129Figure 6-13 Electrical response (a) ISC (b) VOC of pristine SCG powder an

d (c) ISC (d) VOC of SCG thin-film based TENG with respect to different relative humidity (35-85% RH) …………………………….131Figure 6-14 Electrical stability and durability test of the output performance of (a) pristine SCG powder based TENG (b) SCG thin-film based TENG……………………………………………………………132Figure 6-15

Applications of the SCG thin film based TENG as a power supply: (a) Circuit diagram of the bridge-rectifier for charging a capacitor (b) Charging curves of capacitors with various capacitances (0.1, 2.2 and 3.3 µF) (c) Photograph of powering a timer…………………...………133Figure 7-1 Schematic illustration o

f FG based TENG…….….……….139Figure 7-2 Working mechanism of FG based TENG…………………140Figure 7-3 Electrical output of FG-TENG: (a) Isc and (b) Voc …….….141Table captionsTable 2-1 Comparison of flexible G-FETs on/off ratio of our work with other’s work…………………………………………………...………...40Table 3-1 Summary of th

e electrical and mechanical performance of flexible w/o-FG, w/ 1L-FG, w/3L-FG and sandwich FG (FG/PG/FG) samples......................................................................................................52Table 3.2: Comparison of the electrical and mechanical performance of sandwich FG ba

sed F-GFET with previous F-GFET with different gate dielectrics……………………………………………………….………53Table 4-1 Best photovoltaic performance from control and target devices prepared on rigid and flexible substrates……………………………......74Table 5-1 EDS elemental analysis of graphene over Al-foil/PET and Al2O3/Al-foi

l/PET ………………………………………………………88Table 5-2 Comparison of electrical output performance of Gr-TENGs with and without Al2O3 CTL samples used in this study………………103Table 6-1 EDS elemental analysis of SCG-Powder and SCG thin film /Al foil/PET………………………………………………………………...113Table 6-2 Comparison of electrical o

utput performance of SCG-TENGs samples used in this study……………………………………………...126