光電效應 愛 因 斯坦的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

光電效應 愛 因 斯坦的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦朱梓忠寫的 從零開始的量子力學:從骰子遊戲到生死未卜的貓,你非深究不可的神祕理論 和張天蓉的 相對的宇宙,愛因斯坦的困惑:黑洞謎團、弔詭悖論、學者舌戰……淺談相對論與20世紀物理學都 可以從中找到所需的評價。

這兩本書分別來自崧燁文化 和崧燁文化所出版 。

國立陽明交通大學 工學院半導體材料與製程設備學程 吳耀銓所指導 張立威的 多晶矽太陽電池表面濕蝕刻對氮化矽薄膜沉積厚度變異性研究 (2021),提出光電效應 愛 因 斯坦關鍵因素是什麼,來自於多晶矽蝕刻、氮化矽薄膜沉積厚度。

而第二篇論文國立暨南國際大學 應用材料及光電工程學系 詹立行所指導 蕭幃翰的 探索新型芳香銨鹽應用於穩定且有效率之二維鈣鈦礦太陽能電池研究 (2021),提出因為有 反式鈣鈦礦太陽能電池、二維(2D)鈣鈦礦太陽能電池、2D/3D鈣鈦礦太陽能電池、芳香族銨鹽、苯二胺二碘鹽、1,5-二胺基萘二碘鹽、4-胺基吡啶二碘鹽的重點而找出了 光電效應 愛 因 斯坦的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了光電效應 愛 因 斯坦,大家也想知道這些:

從零開始的量子力學:從骰子遊戲到生死未卜的貓,你非深究不可的神祕理論

為了解決光電效應 愛 因 斯坦的問題,作者朱梓忠 這樣論述:

愛因斯坦:「我相信上帝不扔骰子的。」 波耳:「不要告訴上帝該去做什麼。」 科學界兩大巨頭的精彩交鋒 × 二十世紀物理學界熱門話題 惠勒:「我不知道哪裡還會再出現兩位更偉大的人物, 在更高的合作水準上,針對一個更深刻的論題,進行一場為時更長的對話。」   ►人人談論的「量子」,到底是什麼?   量子這個詞是從拉丁文「quantum」而來的,原意是數量。   如果一個物理量存在最小的不可分割的單位,那麼這個最小單位就稱為量子。例如在微觀的世界中,能量的狀態是不連續的,是由一小塊、一小塊能量所組成的能量,而這個最小且不能分割的能量狀態,就是量子。   ►到底什麼時候才會用到量子力學呢?

  有些人可能會認為,量子力學與我們的日常相距很遠。   但其實,我們當今生活都與量子力學有著密不可分的關係,如我們用的手機、電腦、電視機等各種電器,以及大量使用電腦的各行各業(如銀行),這些都與量子力學有著密切的聯繫。   ►「科學巨人」愛因斯坦對量子力學的看法   愛因斯坦是量子力學的先驅,他甚至被譽為「量子論之父」中的一個。   但是,愛因斯坦堅持認為,量子世界與宏觀世界不應該有質的不同,人們對宏觀世界的認識應該可以延伸到微觀領域,量子世界與宏觀世界一樣應該具有實在性。   ►來談談量子力學與諾貝爾物理學獎   量子力學是從20世紀初發展起來的,到今天已經被授予了「無數個」諾貝爾物理

學獎和化學獎。有的諾貝爾獎聽起來似乎只是一個新概念的提出;有些甚至只發表在論文的註釋裡面。其實,每個物理學獎的背後都顯示或隱含著大量的數學過程,而且有非常深刻的物理內容。   ►初學者該如何學好量子力學?   由於量子力學很難用司空見慣的現象來比喻而達到幫助理解的效果。   對於初學者來說,可以採取一種「鴕鳥心態」,即盡量先接受量子力學的正統解釋,暫時不去追根究柢地問為什麼。而本書能夠對理清讀者的困惑有所助益。 本書特色   本書有助於一般讀者了解目前基本的量子力學的正統解釋和數學框架。作者既希望本書對攻讀量子力學課程的學生們有所啟迪(如數學框架方面),也希望能夠向一部分大眾普及量子力學

的基本原理知識。全書文筆流暢、解釋清晰易懂,對於想要一窺量子力學世界的自學者來說,實屬不可多得的佳作。

光電效應 愛 因 斯坦進入發燒排行的影片

阿爾伯特·愛因斯坦,猶太裔理論物理學家,創立了現代物理學的兩大支柱之一的相對論,也是質能等價公式的發現者。他在科學哲學領域頗具影響力因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這一發現為量子理論的建立踏出了關鍵性的一步。
愛因斯坦是20世紀最重要的科學家之一,一生總共發表了300多篇科學論文和150篇非科學作品,有“現代物理學之父”之譽。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞

0:36 愛因斯坦的遺屬
1:00 愛因斯坦的大腦被偷走了
2:16 偷取大腦的事情被揭露
3:36 研究大腦
4:00 哈維失踪
4:53 找回哈維
5:53 神經系統學家
6:35 愛因斯坦的孫女
7:20 幫助愛因斯坦完成遺願
8:17 回到原地
8:35 各種發現
9:33 愛因斯坦的孩子

多晶矽太陽電池表面濕蝕刻對氮化矽薄膜沉積厚度變異性研究

為了解決光電效應 愛 因 斯坦的問題,作者張立威 這樣論述:

致謝 i摘要 iiABSTRACT iii目錄 v圖目錄 vii表目錄 ix第一章 序論 11.1 前言 11.2 太陽能電池種類 21.3 研究動機與目的 41.4 論文架構 5第二章 文獻回顧 72.1 太陽能電池原理 72.2 PN界面 102.3 太陽能電池等效電路 142.4 太陽能電池之電性量測主要電性參數 172.5 太陽能電池生產流程 192.6 晶體矽太陽能電池蝕刻技術 252.7 多晶矽酸

蝕刻反應機制原理 322.8 影響多晶矽酸蝕刻因素 362.9 不同蝕刻階段多晶矽表面形貌分析 412.10 抗反射層 45第三章 實驗方法 493.1 實驗方法 493.2 實驗流程 513.3 實驗機台介紹 51第四章 結果與討論 574.1 實驗結果 574.2 酸配比對氮化矽薄膜沉積影響 584.3 厚度移除量對氮化矽薄膜沉積影響 604.4 槽體溫度對氮化矽薄膜沉積影響 624.5 再現性實驗 64第五章 結論與未來工作

655.1 結論 655.2 未來工作 65參考文獻 67

相對的宇宙,愛因斯坦的困惑:黑洞謎團、弔詭悖論、學者舌戰……淺談相對論與20世紀物理學

為了解決光電效應 愛 因 斯坦的問題,作者張天蓉 這樣論述:

一本所有人都能輕鬆閱讀的相對論科普作品 一窺愛因斯坦與20世紀物理學界的精采大戲     ◎當牛頓不再可靠:相對論與量子力學    19世紀末,牛頓力學和馬克士威電磁理論成果斐然。不過,科學畢竟是無止境的,晴朗的古典物理天空中慢慢地積累了兩片烏雲。而愛因斯坦生得「逢時」,他抓住了這兩片烏雲。他稍稍撥弄了一下第一片烏雲,一篇光電效應的文章,引出了量子的概念。後來,在許許多多物理學家的共同努力下,創立了量子理論。而第二片小烏雲,則引發了愛因斯坦的相對論革命。      量子論和相對論,分別適合描述遠離人們日常生活經驗的微觀世界和宏觀世界。兩個新理論的誕生需要人們轉變觀念,因為這兩個理論導致了許

多與人們生活經驗不符的奇怪現象,諸如量子力學中的「薛丁格的貓」、本書中將要介紹的「孿生子悖論」等。      有位詩人為牛頓寫下幾句令人感動的墓誌銘:      「上帝說,讓牛頓降生吧。於是世界一片光明。(God said, Let Newton be! and all was light.)」      另一位詩人則在後面加上了兩句玩笑話:      「魔鬼撒旦說,讓愛因斯坦出世吧。於是,大地又重新籠罩在黑暗之中(But Satan brought Einstein to the fore. Now all is dark, just as before.)。」     ◎愛因斯坦的鎖:廣義

相對論的數學功臣黎曼幾何   愛因斯坦曾經在一次演講中談到數學和物理的關係時作了一個比喻。大意是說,如果沒有幾何只有物理,就好像文學中沒有語言只有思想一樣。的確如此,愛因斯坦對時間、空間非同尋常的見解,對重力、加速度等效而使得時空彎曲的幾何思想,令他感到無比快樂而著迷。因此,他當時感到急需找到一種合適的語言來描述他的物理概念,說出他深奧的思想!這是一種什麼樣的語言呢?在建立廣義相對論的過程中,愛因斯坦迷惘而困惑了好幾年,直到1912年的一天,他突然想到,解開祕密的鑰匙似乎就是高斯的曲面論。於是,他立刻請教好友格羅斯曼。完全出於他的意料之外,格羅斯曼告訴他,比高斯的曲面論更進了一步,半個世紀之前

的黎曼,已經幫他的重力理論想出了一個完美的數學結構:黎曼幾何。      數學,特別是黎曼幾何,無疑對愛因斯坦創立廣義相對論有至關重要的作用。儘管愛因斯坦曾經被數學老師稱為懶狗,大眾中還傳說他數學曾經不及格之類的謠言,但那都不是一個真實的愛因斯坦。其實,愛因斯坦並不缺少數學天賦。按他自己的說法,16歲之前就已學會歐氏幾何和微積分。只不過,年輕時代的愛因斯坦出於對物理的執著和熱愛,只把數學看成為表述他的物理思想的語言和工具。     ◎霍金的賭注:圍繞數名物理學大師的黑洞戰爭   你可能沒有聽說過,霍金因為對黑洞問題的理解,曾3次與物理學界的同行們打賭,但有趣的是,每次都以霍金輸掉賭局而告終。

     1997年,索恩、普雷斯基爾與霍金就以上所述的黑洞資訊丟失問題打賭。霍金認為黑洞蒸發後資訊消失了,而索恩和普雷斯基爾認為黑洞可以隱藏它內部的資訊,三人打賭的賭注是一本百科全書。      黑洞資訊悖論,實際上也是因為廣義相對論與量子理論的衝突而產生的,霍金站在廣義相對論一邊,色斯金等人則站在量子論一邊。索恩和普雷斯基爾其實都算是重力方面的專家,不過,他們獨具慧眼,將賭注下到了色斯金一邊。      色斯金和特霍夫特從計算黑洞熵中悟出了一個全象原理  (Holographic principle),從而解釋了資訊悖論。全象原理認為,資訊不會丟失,黑洞的邊界儲存了進到黑洞中的包括物質組成

和相互作用的所有資訊。      全象原理的成功,使得霍金本人也認輸:在2004年一次廣義相對論和重力國際會議上,霍金宣布,黑洞的演化是符合因果律的,並沒有丟失資訊,他承認輸掉了這場賭局。   本書特色     -由專業物理學者執筆,文筆輕鬆有趣   -減少使用專業術語和數學公式   -眾多圖片解說,深入淺出介紹深奧物理理論   -使用素材具有學術價值,涉及許多前線科學家正在思考的問題   -捨棄解說枯燥公式,著眼於梳理科學家建立理論的思路 

探索新型芳香銨鹽應用於穩定且有效率之二維鈣鈦礦太陽能電池研究

為了解決光電效應 愛 因 斯坦的問題,作者蕭幃翰 這樣論述:

目次摘要....................................................................................................................................iAbstract............................................................................................................................iii目次.........................

..........................................................................................................v表目次.............................................................................................................................vii圖目次...........................................................

.................................................................viii第一章、緒論...................................................................................................................1 1.1前言...................................................................................................

...............1 1.2 太陽能電池原理.............................................................................................2 1.3 主流太陽能電池演進......................................................................................4 1.3.1 第一代矽晶太陽能電池............................................

...........................4 1.3.2 第二代薄膜型太陽能電池...................................................................5 1.3.3 第三代太陽能電池...............................................................................6 1.4 鈣鈦礦太陽能電池..........................................................

................................7第二章、文獻回顧.........................................................................................................11 2.1 二維Ruddlesden−Popper (RP) 鈣鈦礦太陽能電池....................................11 2.2 二維Dion–Jacobson (DJ) 鈣鈦礦太陽能電池..................................

..........19 2.3 二維/三維混和鈣鈦礦太陽能電池...............................................................27第三章、研究動機.........................................................................................................31第四章、實驗部分............................................................................

.............................33 4.1 實驗所使用之藥品與溶劑............................................................................33 4.1.1 藥品.....................................................................................................33 4.1.2 溶劑..................................

...................................................................33 4.2 材料合成........................................................................................................34 4.2.1 1,4-苯二胺二氫碘鹽(PDADI)……………………………………….34 4.2.2 1,5-萘二胺二碘鹽(NPDADI)………………………………………..34

4.2.3 4-胺碘吡啶-1-二碘鹽(4-APYDI)........................................................35 4.3 鈣鈦礦太陽能電池元件製作.......................................................................36 4.3.1 清洗ITO玻璃基板.............................................................................36 4.3.2 旋塗電

洞傳輸層.................................................................................36 4.3.3 製作鈣鈦礦主動層.............................................................................36 4.3.4 旋塗電子傳輸層.................................................................................37

4.3.5 旋塗電洞阻擋層.................................................................................37 4.3.6 製作金屬電極.....................................................................................37 4.4 實驗儀器................................................................................

........................38第五章、結果與討論.....................................................................................................39 5.1 二維鈣鈦礦太陽能電池................................................................................39 5.1.1 使用PDADI之二維鈣鈦礦太陽能電池............................

...............39 5.1.2 使用NPDADI之二維鈣鈦礦太陽能電池........................................48 5.1.3 使用4-APYDI之二維鈣鈦礦太陽能電池........................................56 5.1.4 二維鈣鈦礦太陽能電池總結.............................................................63 5.2 二維/三維鈣鈦礦太陽能電池..................

.....................................................68第六章、結論.................................................................................................................79參考文獻........................................................................................................................

.80表目次表2.1 n=1、n=2,n=3,n=4 (BA)2(MA)n−1PbnI3n+1與MAPbI3鈣鈦礦元件光伏參數.....13表2.2 (iso-BA)2(MA)3Pb4I13和(n-BA)2(MA)3Pb4I13之光伏參數..................................15表2.3 (4-AEP)2MAn−1PbnI3n+1(n=1、3、4和5) 之光伏參數...........................................18表2.4 PDA、BDA、PeDA、HDA鈣鈦礦太陽能電池元件之光伏參數表....................

22表2.5 3AMP、3AMPY、4AMPY鈣鈦礦太陽能電池元件之光伏參數表................26表2.6 BA和BAI反應之鈣鈦礦太陽能電池光伏參數...............................................28表2.7 3D、3D+BAI和3D+HAI之元件光伏參數........................................................30表5.1 PDADI n=3和PDADI n=5之鈣鈦礦元件光伏參數表.......................................41表5.2 N

PDADI n=3和NPDADI n=5之鈣鈦礦元件光伏參數表.................................49表5.3 4-APYDI n=3和4-APYDI n=5之鈣鈦礦元件光伏參數表................................57表5.4 PDADI n=5、NPDADI n=5和4-APYDI n=5之鈣鈦礦元件光伏參數表...........64表5.5 PDADI n=5、NPDADI n=5和4-APYDI n=5之SCLC數據整理表..................66表5.6 3D、3D+PDADI、3D+NPDADI和3D+4-A

PYDI之鈣鈦礦元件光伏參數........74表5.7 3D、3D+PDADI、3D+NPDADI和3D+4-APYDI之SCLC整理表.....................76圖目次圖1.1 未來電力發展配比圖............................................................................................2圖1.2 太陽光光譜........................................................................................

....................3圖1.3 太陽能電池能帶圖................................................................................................3圖1.4 太陽能電池種類表................................................................................................4圖1.5 三代太陽能電池能階與光學吸收示意圖.....................................

.......................5圖1.6太陽能電池種類和效率發展.................................................................................6圖1.7 三代太陽能電池之光電轉換效率與成本示意圖................................................7圖1.8 鈣鈦礦晶體結構圖...........................................................................................

.....8圖1.9 一般型n-i-p鈣鈦礦太陽能電池結構...................................................................9圖1.10 反式p-i-n鈣鈦礦太陽能電池結構..................................................................10圖2.1 PEAI分子結構...................................................................................................

..12圖2.2 (a)3D MAPbI3和(b)2D (PEA)2(MA)n-1[PbnI3n+1] 結構示意圖..........................12圖2.3 3D鈣鈦礦和2D鈣鈦礦在長時間潮濕環境下吸收光譜比較..........................12圖2.4 (a) n=2,(b) n=3,(c) n=4 (BA)2(MA)n−1PbnI3n+1 鈣鈦礦元件之XRD圖.............13圖2.5 (iso-BA)2(MA)3Pb4I13和(n-BA)2(MA)3Pb4I13之吸收光譜及XRD圖................14圖2.6 (iso

-BA)2(MA)3Pb4I13和(n-BA)2(MA)3Pb4I13之晶體結構圖.............................15圖2.7 (a) BA2(FA)n−1SnnI3n+1,(b) OA2(FA)n−1SnnI3n+1,(c) DA2(FA)n−1SnnI3n+1之GIWAX圖...........................................................................................................16圖2.8 BA2(FA)n−1SnnI3n+1,OA2(FA)n−1SnnI3

n+1,DA2(FA)n−1SnnI3n+1之(a)效率分布統 計圖 (b)J-V曲線圖(c)穩態輸出圖(d)光強度與Voc關係圖...............................17圖2.9(a)FTO/C60和FTO/C60/(4-AEP)2MAn-1PbnI3n + 1(b)n=1、(c)n=3、(d)n=4、(e)n=5, 和(f)FTO/C60/(PEA)2MA4Pb5I16鈣鈦礦薄膜之SEM圖....................................18圖2.10 (4-AEP)2MAn−1PbnI3n+1(n=5)和MAPbI3元件性能

長期穩定性 比較圖...............................................................................................................19圖2.11 (a)分別使用BDA和BA的XRD圖,(b) 分別使用BDA和BA的 TRPL圖.............................................................................................................20圖2.12 (a)

3D MAPbI3 (b)2D BA(c)2D BDA 之GIWAXS圖......................................20圖2.13 2D BA和2D BDA 之JV曲線及效率分布統計圖...........................................20圖2.14 1.3-丙二胺(PDA)、1.4-丁二胺(BDA)、1.5-戊二胺(PeDA)、1.6-己二胺(HAD) 結晶示意圖.............................................................................

..........................21圖2.15 PDA、BDA、PeDA、HDA鈣鈦礦膜之GIWAXS圖...................................22圖2.16 PDA、BDA、PeDA、HDA鈣鈦礦膜之XRD圖...........................................22圖2.17 3(氨基甲基)哌啶和4-(氨基甲基)哌啶分子結構圖..........................................23圖2.18 (a)(b)DJ和RP鈣鈦礦晶體示意(c)(d)Pb-I-Pb角度統計圖(e)軸向示意圖

(f) I·I距離統計圖.........................................................................................................24圖2.19 3AMPY和4AMPY 分子結構圖......................................................................26圖2.20 (a)(3AMPY)和(b)(4AMPY)的結構比較,虛線表示最接近的NH··I距離(c)碘 末端定義的平面之間的層間距離。(d)最近的I···I距

離................................26圖2.21 3AMPY、4AMPY和3AMP之JV曲線和IPCE圖.........................................27圖2.22 (a) BA和BAI反應之鈣鈦礦薄膜的XRD圖(b) BA和BAI反應之鈣鈦礦穩 定度圖...............................................................................................................28圖2.23 3D、3D+BAI和3D+H

AI薄膜之水接觸角測試圖.........................................29圖2.24 3D、3D+BAI和3D+HAI之元件穩定性圖.....................................................29圖3.1 1,4-苯二胺二氫碘鹽(PDADI)分子結構圖..........................................................32圖3.2 1,5-萘二胺二碘鹽(NPDADI)分子結構圖.............................................

..............32圖3.3 4-胺碘吡啶-1-二碘鹽(4-APYDI)分子結構圖.....................................................32圖4.1 PDADI之NMR及MASS圖譜............................................................................34圖4.2 NPDADI之NMR及MASS圖譜........................................................................35圖4.

3 4-APYDI之NMR及MASS圖譜.........................................................................35圖5.1 PDADI n=3和PDADI n=5之鈣鈦礦薄膜X光繞射圖....................................40圖5.2 PDADI n=3和PDADI n=5之鈣鈦礦元件J-V曲線圖......................................41圖5.3 PDADI n=3和PDADI n=5之鈣鈦礦元件IPCE曲線圖...................

.................41圖5.4 放大倍率10000倍之二維鈣鈦礦SEM圖,左圖為PDADI n=3右圖為PDADI n=5.......................................................................................................................42圖5.5 放大倍率20000倍之二維鈣鈦礦SEM圖,左圖為PDADI n=3右圖為PDADI n=5..................................................

.....................................................................42圖5.6 放大倍率50000倍之二維鈣鈦礦SEM圖,左圖為PDADI n=3右圖為PDADI n=5.......................................................................................................................43圖5.7 (a) PDADI n=3純電子元件 (b) PDADI n=3純電洞元件 (c) PDADI

n=5純電子元件 (d)PDADI n=5純電洞元件之SCLC圖................................................44圖5.8 PDADI n=3和PDADI n=5之鈣鈦礦元件UV-Vis吸收光譜圖.........................46圖5.9 PDADI n=3和PDADI n=5之鈣鈦礦元件PL光譜圖.........................................46圖5.10 PDADI n=3和PDADI n=5之鈣鈦礦元件穩定度測試圖................................47圖

5.11 NPDADI n=3和NPDADI n=5之鈣鈦礦薄膜X光繞射圖...............................48圖5.12 NPDADI n=3和NPDADI n=5之鈣鈦礦元件J-V曲線圖..............................49圖5.13 NPDADI n=3和NPDADI n=5之鈣鈦礦元件IPCE曲線圖...........................50圖5.14 放大倍率10000倍之二維鈣鈦礦SEM圖,左圖為NPDADI n=3右圖為 NPDADI n=5..............................

.......................................................................51圖5.15 放大倍率20000倍之二維鈣鈦礦SEM圖,左圖為NPDADI n=3右圖為 NPDADI n=5.....................................................................................................51圖5.16 放大倍率50000倍之二維鈣鈦礦SEM圖,左圖為NPDADI n=3右圖為 NPDADI n=5....

.................................................................................................51圖5.17 (a) NPDADI n=3純電子元件 (b) NPDADI n=3純電洞元件 (c) NPDADI n=5純電子元件 (d)NPDADI n=5純電洞元件之SCLC圖.....................................52圖5.18 NPDADI n=3和NPDADI n=5之鈣鈦礦元件UV-Vis吸收光譜圖................53圖5.19 NPDA

DI n=3和NPDADI n=5之鈣鈦礦元件PL光譜圖................................54圖5.20 NPDADI n=3和NPDADI n=5之鈣鈦礦元件穩定度測試圖..........................55圖5.21 4-APYDI n=3和4-APYDI n=5之鈣鈦礦薄膜X光繞射圖............................56圖5.22 4-APYDI n=3和4-APYDI n=5之鈣鈦礦元件J-V曲線圖..............................57圖5.23 4-APYDI n=3和4-APYDI n=

5之鈣鈦礦元件IPCE曲線圖...........................58圖5.24 放大倍率10000倍之二維鈣鈦礦SEM圖,左圖為4-APYDI n=3右圖為4 APYDI n=5........................................................................................................59圖5.25 放大倍率20000倍之二維鈣鈦礦SEM圖,左圖為4-APYDI n=3右圖為4- APYDI n=5............................

............................................................................59圖5.26 放大倍率50000倍之二維鈣鈦礦SEM圖,左圖為4-APYDI n=3右圖為4- APYDI n=5........................................................................................................59圖5.27 (a) 4-APYDI n=3純電子元件(b) 4-APYDI n=3純電洞元件 (c)4-AP

YDI n=5純電子元件 (d)4-APYDI n=5純電洞元件之SCLC圖...................................60圖5.28 4-APYDI n=3和4-APYDI n=5之鈣鈦礦元件UV-Vis吸收光譜圖..............61圖5.29 4-APYDI n=3和4-APYDI n=5之鈣鈦礦元件PL光譜圖...............................62圖5.30 4-APYDI n=3和4-APYDI n=5之鈣鈦礦元件穩定度測試圖.........................62圖5.31 PDADI 、NPDADI 和4

-APYDI 的元件層間距示意圖................................63圖5.32 PDADI n=5、NPDADI n=5和4-APYDI n=5之鈣鈦礦薄膜X光繞射圖.......64圖5.33 PDADI n=5、NPDADI n=5和4-APYDI n=5之鈣鈦礦元件J-V曲線圖.......65圖5.34 PDADI n=5、NPDADI n=5和4-APYDI n=5之鈣鈦礦元件IPCE曲線圖.......65圖5.35 3D、PDADI n=5、NPDADI n=5和4-APYDI n=5之鈣鈦礦元件穩定度測試圖....................

.................................................................................67圖5.36 3D、3D+PDADI、3D+NPDADI和3D+4-APYDI之鈣鈦礦薄膜 X光繞射圖..........................................................................................................68圖5.37 (a) 3D、3D+PDADI、3D+NPDADI和3D+4-APYDI之鈣鈦礦元件UV-Vis

吸收光譜圖 (b) 波長400nm~500nm區間放大圖 (c) 波長650nm~800nm區 間放大圖.............................................................................................................69圖5.38 3D、3D+PDADI、3D+NPDADI和3D+4-APYDI之鈣鈦礦元件 PL光譜圖.......................................................................

.....................................70圖5.39 3D MAPbI3之SEM俯視圖,左圖為放大20000倍,右圖為放大 50000倍...............................................................................................................72圖5.40 3D+PDADI之SEM俯視圖,左圖為放大20000倍,右圖為放大 50000倍.............................................

..................................................................72圖5.41 3D+NPDADI之SEM俯視圖,左圖為放大20000倍,右圖為放大 50000倍...............................................................................................................72圖5.42 3D+4-APYDI之SEM俯視圖,左圖為放大20000倍,右圖為放大 50000倍..............

.................................................................................................73圖5.43 SEM橫截面圖,左圖為3D,右圖為3D+PDADI.........................................73圖5.44 SEM橫截面圖,左圖為3D+NPDADI,右圖為3D+4-APYDI....................73圖5.45 3D、3D+PDADI、3D+NPDADI和3D+4-APYDI之鈣鈦礦元件 J-V曲線圖.........

..................................................................................................75圖5.46 3D、3D+PDADI、3D+NPDADI和3D+4-APYDI之鈣鈦礦元件 IPCE圖................................................................................................................75圖5.47 (a) 3D(b) 3D+PDADI(c)3D+N

PDADI(d)3D+4-APYDI純電子元件之 SCLC圖...............................................................................................................77圖5.48 (a) 3D(b) 3D+PDADI(c)3D+NPDADI(d)3D+4-APYDI純電洞元件之 SCLC圖......................................................................................

.........................77圖5.49 3D、3D+PDADI、3D+NPDADI和3D+4-APYDI之鈣鈦礦元件穩定度測試圖.....................................................................................................78