光電效應光強度頻率的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

光電效應光強度頻率的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦郝洛西,曹亦瀟寫的 光與健康:以實證設計為根基,引領全球光與照明的研究與應用 和盧廷昌,王興宗的 半導體雷射技術(2版)都 可以從中找到所需的評價。

另外網站光电效应的实验规律也說明:(2)在保持入射光强度(光子数)不变的条件下,入射光频率增加1倍,每个光子的能量增加1倍,电子获得的初动能增大,结果截止电压相应增加hν/e,因为单位时间内入射的光子数不变,则 ...

這兩本書分別來自一葦文思 和五南所出版 。

國立陽明交通大學 影像與生醫光電研究所 李偉所指導 陳冠然的 基於曲電與介電效應之三穩態切換負型膽固醇液晶元件的光電響應 (2021),提出光電效應光強度頻率關鍵因素是什麼,來自於膽固醇液晶、彎曲型液晶分子、曲電效應、介電效應、介電頻譜。

而第二篇論文國立陽明交通大學 應用化學系碩博士班 刁維光、太田信廣所指導 沙樂實的 以電場調控技術揭示甲基氨基鹵化鉛鈣鈦礦之激子性質:從量子點到奈米晶體薄膜 (2021),提出因為有 甲基氨基鹵化鉛鈣鈦礦、溫度相關電吸收光譜、積分法分析、激子結合能、溫度相關電光致發光光譜、離子遷移的重點而找出了 光電效應光強度頻率的解答。

最後網站國立臺東高級中學108學年度第一學期期末考高一物理題目卷 ...則補充:下列有關「光電現象」的敘述,何者正確? (A)入射光之頻率高於底限頻率時,縱然光強度微弱亦可立即產生光電子(B)無論光頻率多少,光強度愈強,愈容易產生光電子(C)光電子的 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了光電效應光強度頻率,大家也想知道這些:

光與健康:以實證設計為根基,引領全球光與照明的研究與應用

為了解決光電效應光強度頻率的問題,作者郝洛西,曹亦瀟 這樣論述:

照明影響健康的時代鉅作 以實證醫學為根基 引領全球光之照明、色彩與健康的權威研究 從住宅、學校、辦公場所、醫療與安養院所乃至都市規畫 創建改變人類光與照明應用技術的全新里程碑   遠古以來,人類遵循「日出而作,日落而息」,直到19世紀末電燈發明;從此以後,人類正式邁入夜生活時代,也開始經歷日夜顛倒、時差、3C藍光導致失眠等健康困擾。   本書奠基於醫學與研究實證,闡明光對於人體健康的影響。既是建築與照明、醫療專業人士的教材,也是學術價值極高的科學研究用書,更提供許多光與照明實際應用設計的專業規畫方案,為建築與照明行業從業人員提供學習參考和創新思考的引導,是為21世紀照明與健康的嶄新里程

碑,提供富有前瞻性與永續性的發展視野。   本書作者郝洛西,現為同濟大學建築與城市規畫學院教授,亦是全球知名、專門從事與顏色、視覺與照明領域的數位、科學研究和設計工作的專家。她自2014年起便帶領本書共同作者曹亦瀟,一起進行關於全年齡的光與健康研究、設計與應用工作,本書即為兩位作者12年研究之集大成,為人類提出劃時代的珍貴成果——掌握光照,便能掌握健康。   ★ ★ ★   壹、醫學實證光與健康的關係   本書引用近700項國際研究文獻+繪製400張圖表,針對視覺發育、視力健康、生物節律、情緒認知、新陳代謝、免疫調節等方面,提供詳細的醫學理論並設計實驗研究進行分析,是為照明設計改善及促進

人體健康的堅實依據,而如何利用照明技術來積極改善健康,將是未來的重要發展趨勢。   ■ 控制光照,就能改善健康——以褪黑激素為例   褪黑激素不僅影響睡眠週期,若分泌不足,除了會提高乳癌、攝護腺癌等的罹患風險,也跟發胖和近視有關。實驗顯示,350lx(注:lx為照度單位,表示被照物體表面單位面積之光通量)左右室內照明的光強度,已能使夜間褪黑激素分泌濃度顯著下降,由此可知,不當的室內照明會影響使用者的睡眠節律;反之,由老化、輪班和快速時區變化引起的節律紊亂及睡眠障礙,也能藉由室內節律光照來改善。   ■ 不同光譜的光療效用   處於亞健康狀態的人群,若接受積極的光照便可回復健康,最廣為人知的便屬

紅外線光療,除了治療或輔助治療急性與慢性軟組織損傷,還可促進新陳代謝和細胞增生;而偏頭痛採用窄波段綠光,亦具有干預療效。   貳、全面剖析光照對各年齡發展與特定對象之健康影響   了解光對健康的影響之後,了解如何以正確的方式來運用自然光與人工照明,不僅可避免對健康造成傷害,對於希望採用光療來改善疾病症狀的醫學界人士,更是極具參考價值的先驅研究。本書除了逐一分析不適當的自然採光或照明,對不同年齡族群與特定對象所造成的正面與負面健康影響,更提出不同發展階段應注重的照明要點,以及健康方面的改善與治療建議。   ■ 嬰幼兒   因為其眼球藍光透過率較成年人高出4倍,因此藍光可直達嬰幼兒的視網膜,對黃

斑部發育造成影響,必須盡量避免接觸富含藍光的電子設備。但藍光並非百害而無一利,波長390~470 nm的高強度藍光可用於減輕新生兒黃疸狀況,治療效果極佳。   ■ 青少年   光照與經常用眼過度的青少年視力健康及其學習績效有關。除了使用未經認證的健康照明燈具、桌面照度的設置不合理、與檯燈下光亮度對比過大、重點照明燈具布置錯誤、長時間使用平板或手機等,都是普遍導致眩光和視力惡化的問題。而課業壓力亦嚴重壓縮青少年的睡眠時間,也使他們具有晚睡晚起的現象,應關注日間自然採光效果,包括減少入睡後的光線干擾,在光汙染嚴重地區應用窗簾阻檔室外人工光源等方法來防範。   ■ 老齡人口   此階段眼睛功能明顯退

化,包括視敏度及色彩辨別能力、對比敏感度、明暗適應能力都下降,對眩光特別敏感、視野範圍縮小等問題,都會嚴重影響老年人的生活品質。因此居家環境需提高照度水準、避免眩光、確保相鄰空間亮度的平穩過渡與照度均勻度、良好的光源顯色性、增加對比度,以及採用寬板設計的開關面板與延時開關等,都能避免老人最常發生的跌倒問題,改善整體的生活品質。   ■ 孕產婦   以產婦產程的光照陪伴為例,從產前、待產、分娩、產後各階段,產婦的身心都會面臨極大的變化。因此作者研究團隊提出光照分娩陪伴方案,在宮縮逐漸強烈的第一產期維持暗光,使褪黑激素含量增加,為分娩提供動力,並且在分娩室設計模擬花開時節花朵繽紛的光照意象,以幫助

產婦放鬆、鎮靜。此一方案在廈門的醫院分娩中心實施應用,並獲得了極佳的回響。   ■ 年長病患   隨著社會高齡化與失智症患者的增多,在治療上除了用藥控制,也可以利用高色溫、高強度的光源,在不同時段提供不同照度和方向的方式(早晨7:30採6,500K、8:00前從200lx逐漸達到至少1,000lx垂直照度並維持、傍晚18:00逐漸降低至200lx),來改善患病老年人的畫夜節律,並可能減少躁動行為,使照護上更加輕鬆。   參、不同場域的健康照明規畫   醫療界盡其所能尋求一切辦法幫助患者減輕病痛,提高生命品質,然而除了內外科的用藥與治療,在作者團隊歷時多年的研究下,也開啟了以光照輔助醫療,甚至

達到治療效果的可能性。本書針對各種不同環境的居住健康,包括:住家、教室、辦公室、工廠生產線、醫院手術室與病房、安養機構、地下空間,甚至極地科學考察站等,從波長、色溫、照度、光源位置進行周全的評估分析,包括從牆面、地板到天花板的光線反射、漫射、散射等條件,到照明控制時段與開關設計等細節都考慮在內,提供了建築設計與照明業者最詳盡週全的專業建議。   ■ 教室   小學課堂有較多動手操作,因此需要足夠的直射光照。中學生的學習以讀寫作業為主,教室光環境應強調視覺舒適和緩解用眼疲勞,課桌面在符合標準規定的300lx照度的情況下,應斟酌再提高。而美術教室、電腦教室等視覺作業要求更高的教室,照度值則需達到5

00lx,甚至更高。而為了觀看多媒體投影設備,燈光和窗簾經常是關閉的,學生在黑暗中寫字會嚴重影響視力,因此多媒體投影區和座位區應設立獨立的照明。   ■ 安養中心   以安養中心或長者居室為例,提高照度並增加對比度;減少相鄰空間的亮度差以避免產生視疲勞;浴室、廁所燈則宜採用延時開關等,都能降低老年人的跌倒風險。   ■ 地下空間   地下空間普遍多有封閉、潮濕、通風不良等問題,可以透過諸如將自然光引入地下空間、地下照明模擬自然環境意象、在出入口採用重點照明設計,以避免明暗快速變化時所會引發瞬間盲視或眩光等方法,對地下空間的先天條件不良加以改善。   ■ 手術室   手術與病患性命攸關,因此手術

室中需要最高標準的、最專業化的照明條件。國際照明委員會、北美照明工程協會建議,手術室環境照度均在1,000lx以上;而為了保證手術醫生對病灶組織、血液等色澤變化的辨識和判斷能力,光源顯色指數Ra應大於90,特殊顯色指數R9應大於0,而且這些標準還應盡可能提高。室內環境照明的光源色溫需與手術無影燈色溫相同或接近。手術操作時,為確保避免眩光和陰影以及視野內照度均勻,因此燈具需在手術枱四周以環狀設置。此外,熱能會引起外科醫生的不適,也會使暴露在外的病人組織脫水,盡可能控制800~1000nm範圍內的光譜能量分布。   肆、城市夜景照明的發展與隱憂   世界衛生組織預測,到了2050年,全世界70%

的人口將生活在城市之中,也因此,城市的照明規畫與光害防治,亦將隨著人口愈來愈多而更顯重要。   ■ 城市健康照明的進展   近幾十年,城市照明建設發展有著飛躍式的進步。除了照明燈具的品質提升、燈具配光更加合理,使得路面照度更加均勻、大幅減少交通事故。而近50%的傳統光源被LED取代,照明節能也引領了城市的低碳轉型與永續發展。此外,作者也針對建築立面的LED媒體廣告,提出亮度、解晰度、刷新頻率、色彩、內容複雜度,之於觀者視覺與情緒舒適度的影響分析,對於現今為數愈來愈多的LED廣告媒體與城市空間的整合,有著極為關鍵且建設性的參考價值。   ■ 繁榮背後的隱憂與警示   城市中不適當照明將造成光污染

,若不加以重視,將對動、植物產生嚴重的負面影響,尤其對於野生動物更甚。諸如昆蟲趨光而被燈具的高溫燒死、夜間建築照明使得鳥類迷失方向甚至撞上玻璃帷幕而亡、建築物和路燈照明也會使兩棲動物無法入睡……等等,都將造成致命且無法彌補的生態浩劫。因此作者亦針對上述提出了分析與警示,希望人類在追求以科技促進健康福祉之餘,也必須關注各界對於其他物種與生態環境的重視。 名人推薦   ★台灣永續建築與健康建築研究先驅   成功大學建築系前系主任   能源科技與策略研究中心 江哲銘 特聘教授/博士——專業推薦

光電效應光強度頻率進入發燒排行的影片

物理治療:http://physicaltherapyclass.com/
運動傷害:https://sites.google.com/s/1cieisPHB2Xkrn1em8vthbJgglWmCOZH4/p/1knFDZuDHNtQIb04gBSTm2fGkexK1QwX4/edit


什麼是物理治療?
  什麼是物理治療?簡單的說,就是利用光、電、水、冷、熱、力等物理因子和運動治療,來評估並治療病患的問題。舉例來說,微波是一種電磁波,利用微波造成水分子的震盪可以來加熱食物。在物理治療中,就利用微波的此一特性,可震盪人體組織內的水分子,提高深部組織的溫度,加速血液循環,促進患部的癒合速度,也有減輕疼痛的效果。因此利用微波來治療,就是一種物理治療。
歸納起來,物理治療的方法如下:
(一)光療--紫外線、低能量雷射
(二)電療--低頻電刺激、中頻干擾波
(三)水療--溫水療、冷水療、熱水療、冰水療、冷熱水交替治療、水中運動治療
(四)冷療--冷敷、冰敷、冰按摩、冷氣治療
(五)熱療--濕熱療、乾熱療、超音波、短波、微波、蠟療、紅外線及熱敷包
(六)力療--操作治療、牽拉運動、牽引、按摩
(七)運動治療(Movement)--有伸展運動、主動運動、阻力運動、耐力運動、呼吸運動、平衡及協調運動、功能性運動、神經肌肉誘發技巧、姿勢矯正療法等。徒手治療(Manual):有關節鬆動術、按摩、筋膜鬆弛術、被動運動、其他特殊技巧。
§低能量雷射:
  雷射是一種激發光子束,與一般光線不同的是,它具有單一頻率、單一色調、單一相位及集中光束的特性。一般醫用雷射,主要分為兩大類:

  第一類是大家比較熟悉的高能量雷射,又稱為熱雷射或硬雷射,其能量通常為數十至數百瓦特,外科醫師常利用其高熱能以達到凝固止血及切割組織的作用。

  另一類是低能量雷射,又叫冷雷射或軟雷射,其能量通常是數毫瓦特至數十毫瓦特。當這類雷射照射人體後,經由其電磁效應或光化學作用,會影響體內種種生理及代謝反應,例如血管擴張、去氧核糖核酸( DNA )合成增加、膠原組織增生及免疫功能的增進等。

  由於低能量雷射具有上述生物刺激的特性,因此它可用來治療疼痛,並可增進傷口及組織復原。此種治療的副作用極低,少數病人會覺得治療部位有針刺感,其他副作用還包括噁心、頭暈、局部紅斑或皮膚色素增加等。由於雷射對眼睛有害,因此不可直接照射眼睛,治療時也要帶上墨鏡以保護眼睛。一個部位治療時間為數秒至數分鐘,治療的效果通常在三至五次內會顯現出來。目前在醫院中常用的有氦氖雷射及鎵?紅外線雷射等。

  在風濕病的復健方面,低能量雷射可用來治療各種軟組織疾病,如肌腱炎、肌肉肌膜疼痛症候群等,其成效約為 75 ~ 80% 。

§電療:
  根據史書記載,最早使用電刺激來治療骨關節疾病可追溯到西元前四世紀。當時的希臘人和羅馬人發現一種魚可產生一百至一百五十伏特的電流。他們就利用這種魚產生的電流來治療足部關節炎。

  電刺激治療風濕關節炎最重要的目的是止痛,此外,電刺激也可以用來增強肌力,延緩或避免肌肉萎縮,減輕肌肉痙攣和增進血液循環。

  電刺激的種類很多,其中與骨關節疾病之治療有關的可分為兩大類:一是低頻波(一般稱為經皮神經電刺激),另一則是中頻波(一般稱為中頻干擾波)。低頻波是指頻率在 1000 以下的電波,一般多採用 0 ~ 100; 中頻波的頻率是 1000 ~ 1000000 (一百萬)之間,但頻率超過 10000 (壹萬)以上的電波會產生熱,所以臨床上中頻波頻率均在 1000 至 10000 之間。經皮神經電刺激就是把電流通過黏在皮膚上的電極,以達刺激神經而得止痛的效果,成效不錯且無副作用,病人甚至可以買回家自行使用。

  中頻干擾波一般是採用兩組電極(一組兩個),其頻率相差為 0 ~ 100 之間,如 4100 及 4000 ,通電後兩組電極會以中頻波穿透皮膚,而在深部組織發生電流干擾,產生一個 0 ~ 100 的低頻波。

  採用中頻波的原因是穿透皮膚較容易,對皮膚的刺激也小,電流強度可以調得較大。

  臨床研究顯示,電刺激對於下背痛、退化性關節炎、類風濕性關節炎、韌帶扭傷、肌腱炎(如網球肘)、肌肉及肌膜疼痛症候群等均有顯著的成效。

  很多慢性關節炎病人因為長期藥物治療而導致胃及十二指腸潰瘍,可以考慮合併使用電刺激,以減少藥物的使用。

  此外,雷諾氏症候群病人或是交感神經失營養症者,也可用電流刺激局部患處或相關的交感神經節,以增進血液循環。

  而當風濕關節炎病人發生週邊神經病變時,也可用電刺激來減輕疼痛或是延緩肌肉萎縮。

§水療:
  水療通常使用熱水,所以也算是淺層熱療的一種。除了利用水的熱度來降低肌肉痙攣,減輕關節疼痛之外,水還具有浮力及黏稠度。此特性使水療能提供患者同時做各種運動而不致傷害關節。此外,大多數醫院的水療槽內裝有馬達,可將空氣與水混合打入水療槽,造成渦流,具有按摩的效果。

  水療的種類很多, 簡單的如家庭用的浴缸、公共浴室。一般醫院則依其規模大小而裝設各種上肢、下肢及全身水療槽、八字型水療槽或治療池等。此外,溫泉療法、泥漿療法亦可說是水療的一種。有人說溫泉或泥漿中的礦物質會改善關節炎,但亦有人反對此說法。

§冷療:
  冷療的基本生理作用是使血管收縮,降低局部新陳代謝,壓抑神經的興奮及降低神經傳導速度。對於風濕關節炎而言,冷療可降低肌肉痙攣,減輕關節疼痛。

  與熱療不同的是,冷療可止血、消腫,故適用於急性關節炎或骨關節急性外傷。有些病人在運動治療後會有疼痛、腫脹的現象,也可以用冷療來消除。

  冷療的種類有很多,如浸泡法、冷(冰)敷法、冰塊按摩法及噴霧法等。

  浸泡法就是把要治療的肢體浸入 0 至 10 ℃的冷水中。

  冷敷法有很多種,常用的是家庭用的冰敷袋,只要把冰水放入橡皮袋或塑膠袋即可。亦可使用含有矽膠的冰敷袋,使用前先放入冰箱上層,使用時再取出即可。必要時可將冰敷袋充氣後壓迫患處,以止血消腫。其他還有即冷式的化學冰敷袋,使用時將袋子一壓,其內容物會產生化學作用而迅即變冷。

  冰塊按摩法是用冰塊按摩患處。為了方便起見,使用前可先把冰塊作成杯形或圓柱形,以便於局部按摩。

  噴霧法是將甲基氟( methylfluoride )等化學物質裝入容器中,使用時可噴出冷凍氣體,常用來治療肌肉疼痛或急性運動傷害。在國外風濕病醫師做關節穿刺前也常用來減輕病人的痛苦。國內有些醫院也裝設大型的噴霧式冷療機。

  冷療的治療時間為五至二十分鐘。冷療初期會覺得冰冷,接著會感覺燒燒的,最後會有點酸痛、麻木。當皮膚變白發青時,應立即中止治療,以免凍傷。罹患周邊血管病變、雷諾氏症候群(手指遇冷會發白發紅)或是對於冷療過敏的人,都不適合做冷療。

§熱療:
  熱療最重要的功效有五:
   (1) 減輕疼痛,
   (2) 降低肌肉痙攣,
   (3) 減輕關節的僵直感,
   (4) 增進膠原組織的延展性,以增進關節活動度,
   (5) 增進血液循環。

  根據穿透人體組織的深淺,可將熱療分為淺層及深層熱療。淺層熱療透熱深度小於一公分,包括熱敷包、熱水袋、烤燈、紅外線、電毯、蠟療、微粒療法( fluidotherapy )等。深層熱療又稱為透熱療( diathermy ),其熱量可深入三到六公分,包括短波、微波及超音波等。

  熱敷是常見的一種熱療方式,在家裡可以用水煮、化學生熱、微波爐加熱等方式的熱敷包包上毛巾,敷在患部 20 到 30 分鐘即可。電毯,也是很方便的一種熱敷方式,一般電毯是乾熱式的,目前市面上也有溼熱式電毯,即利用吸收空氣中水分或直接可包潮布,其效果比乾熱式者為佳。熱水袋是種便宜簡單的熱敷方法,只要將熱水注入熱水袋內封緊,外包乾或微濕毛巾即可。

  熱敷用品不一定愈貴愈好,只要個人使用方便有效即可,在購買市面上各式各樣的熱敷用品應事先了解使用與保存的方法。使用熱療最主要是避免燙傷,熱敷不是愈熱愈好,也不是愈久愈好,所以使用電毯最好能夠定時,避免睡覺時用,感覺遲鈍或喪失者應多包一層毛巾或溫度不要太高,使用時間 20 至 30 分鐘就夠了,超過 30 分鐘效果差不多,且就算溫度不高時間夠長也會造成燙傷的。在此吾人不建議用熱毛巾作熱敷,因為熱毛巾保溫效果較差且容易燙傷。

  其他熱療方式如紅外線燈屬乾熱式熱療,有時會因太乾燥而皮膚不適。

  在物理治療部門除使用熱敷包外,也會使用所謂深部熱療或透熱療法,一般是利用高頻的電磁波例如短波、微波、或者用超音波等,深部熱療可穿透到組織的深部,但有其適應症與禁忌症,必須由專業的物理治療人員施行,否則容易發生危險。

基於曲電與介電效應之三穩態切換負型膽固醇液晶元件的光電響應

為了解決光電效應光強度頻率的問題,作者陳冠然 這樣論述:

本研究於負型液晶DV10001中添加右旋手性分子R5011形成負型膽固醇液晶,接著經由摻雜不同配比濃度之彎曲型液晶分子CB7CB使配製完成之液晶材料具有不同程度的曲電特性,筆者藉此探討負型膽固醇液晶在摻雜彎曲型液晶分子後於不同電場條件下的紋理形成種類以及其光電響應。實驗結果分析中,對於形成紋理之介電頻譜進行首要之探討,透過均勻橫向螺紋態(ULH)紋理於介電實部之曲電鬆弛訊號判斷此材料之曲電特性,接著將其鬆弛強度90%與10%所對應於介電頻譜上之頻率點進行紋理切換頻率區間的劃分,並作為此研究之三穩態紋理切換中操作頻率區間的依據。當操作頻率f < fL,液晶分子因強烈的電流體效應及曲電強度而得以

形成ULH態;在頻率fL < f < fH區間中,曲電特性隨著頻率的增加逐漸變小,漸漸的由介電效應主導,此時液晶分子於電場驅動下形成焦錐態(FC);當頻率f > fH,此時曲電效應幾乎完全消失,液晶分子受介電效應主導而形成平面態(P)。筆者藉由本研究提供了讀者一套於負型膽固醇液晶達成三穩態紋理切換的分析方法,並透過介電頻譜與光電特性量測詳細地說明其紋理背後的形成機制與應用。

半導體雷射技術(2版)

為了解決光電效應光強度頻率的問題,作者盧廷昌,王興宗 這樣論述:

  半導體雷射廣泛的存在於今日高度科技文明的生活中,如光纖通信、高密度光碟機、雷射印表機、雷射電視、雷射滑鼠、雷射舞台秀甚至雷射美容與醫療、軍事等不勝枚舉之應用都用到了半導體雷射。半導體雷射的實現可以說是半導體科技與光電科技的智慧結晶,同時也對人類社會帶來無與倫比的便利與影響。本書沿續「半導體雷射導論」由淺入深的介紹半導體雷射基本操作原理與設計概念,內容涵蓋了不同半導體雷射的構造與光電特性,以及半導體雷射的製程與信賴度,可為大(專)學四年級以及研究所一年級相關科系的學生與教師,提供有系統的學習半導體雷射的教科書,本書亦適用於想要深入了解半導體雷射的專業人員。

以電場調控技術揭示甲基氨基鹵化鉛鈣鈦礦之激子性質:從量子點到奈米晶體薄膜

為了解決光電效應光強度頻率的問題,作者沙樂實 這樣論述:

有機—無機複合型鹵素鈣鈦礦材料(OIHPs)已為能源採集領域及光電裝置領域帶來曙光。為全盤了解能源採集領域及光電設備的潛能,更是為了辨認創新材料設計策略,因此對OIHPs本質光學及電子學性質的了解就變得極為重要。在以OIHPs為基礎的裝置上,激子在工作機轉上所扮演的角色極為重要,在此篇探究溫度相關的電吸收及電光致發光光譜的論文中,激子也將被詳細研究。電吸收光譜及電光致發光光譜分別為由施加電場所引起的吸收及光致發光光譜,在本篇論文中將在不同溫度下(290 K到40 K) 分別測量。我們在以施加電場所調制頻率中的一次諧波及二次諧波,測量變溫(從290 K到40 K)的甲基氨基溴化鉛量子點及甲基氨

基鹵化鉛奈米晶體薄膜(鹵素為碘或溴)之電吸收光譜。在甲基氨基溴化鉛量子點及奈米晶體薄膜的結果中,所有的吸收、電吸收、電光致發光光譜皆在溫度下降時產生紅移。在光譜中的紅移主要是由晶格收縮而產生,且透過與溫度相關的 X 光繞射實驗排除了相變化的可能性。另一方面,甲基氨基碘化鉛奈米晶體薄膜展示出清楚的相變化,290 K 時為四方晶系, 60 K 變成斜方晶系,而到了120K時則呈現混合的晶系(四方晶系混合斜方晶系)。在甲基氨基溴化鉛 量子點和甲基氨基鹵(碘或溴)化鉛奈米薄膜中觀察到的二次諧波電吸收光譜僅因二次史塔克效應而產生。二次史塔克效應是激子吸收帶的一階和/或二階導數的線性組合,並且在自由載流子

吸收中沒有獲得場效。因此,透過積分電吸收光譜,從樣品薄膜的總吸收光譜中可提取出激子帶,並確定在每個溫度下激子吸收後偶極矩 (Δμ) 和極化率變化 (Δα) 的大小。被提取出的激子帶形狀亦可用於擬合每個溫度下的總吸收曲線和擬合每個溫度下的激子吸收曲線線寬,來估計量子點和奈米晶體薄膜的激子結合能。我們還發現了,當施加電場的調製頻率低至40 Hz時,甲基氨基碘化鉛薄膜的四方晶系和斜方晶系電吸收光譜取決於光照功率密度。隨著光照功率密度的增加,低調製頻率處的電吸收光譜強度降低,及線譜形狀分別從激子帶的二階導數貢獻改變為一階導數貢獻。與低調製頻率相比,當場的調製頻率高達 1 kHz 時,電吸收光譜與光照功

率密度無關。在低調製頻率和高光照功率密度下,場被認為產生了激子的取向極化,及此被認為是由 場在低調製頻率和高光照功率密度下所致的,此為MA+ 和 I-沿施加電場方向的離子遷移的結果 。激子吸收帶的電吸收光譜最顯著的特徵之一,是在施加場的調製頻率下一次諧波處測量時發生的。相較於分子系統中顯現出電吸收光譜之第一倒數線譜形狀,夾在FTO和PMMA中的甲基氨基鹵(碘或溴)化鉛薄展現出激子吸收帶會因施加場之極性不同而變寬及變窄。與溫度相關的展寬和變窄,尤其是在甲基氨基碘化鉛中,包含 200 K 以下和以上的兩種不同狀態。激子帶在200 K 以上會變寬(和變窄)而切換到 200 K 以下後會變窄(和變寬)

。 在甲基氨基溴化鉛奈米薄膜中沒有偵測到由降低溫度所引起的極性相關之激子帶變寬和變窄的切換特性。我們研究了溫度相關的光致發光和電場所引起的光致發光光譜變化,即摻雜在 PMMA 薄膜中甲基氨基溴化鉛量子點,和夾在 FTO 和 PMMA 薄膜之間的甲基氨基碘化鉛薄膜的電光致發光光譜。基於與溫度相關之的光致發光光譜線寬,我們亦估算了激子結合能。摻雜在 PMMA 薄膜中甲基氨基溴化鉛量子點的電光致發光光譜顯示了電場會淬滅光致發光光譜,並且缺陷放射的淬滅幅度大於激子放射。 然而,在甲基氨基碘化鉛薄膜的情況下,電吸收光譜在四方晶系和斜方晶系中都顯示出頻率依賴性,意即光致發光光譜分別在施加場的低調製頻率和高

低調製頻率下顯示出增強和淬滅。