three-dimensional sh的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

three-dimensional sh的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Healy, J. J. (EDT)/ Kutay, M. A. (EDT)/ Ozaktas, H. M. (EDT)/ Sh寫的 Linear Canonical Transforms: Theory and Applications 可以從中找到所需的評價。

國立陽明交通大學 生物科技學系 林志生所指導 蔡慶宏的 利用小鼠動物模式探討懸浮顆粒PM2.5誘發 急性肺臟損傷之機轉 (2021),提出three-dimensional sh關鍵因素是什麼,來自於細懸浮微粒、腎素-血管收縮素系統、第二型血管收縮素轉換酶、急性肺損傷、炎症反應。

而第二篇論文國立臺灣師範大學 光電工程研究所 鄭超仁所指導 葉仲禹的 生物微培養器研製及其應用於數位全像顯微活細胞觀測 (2021),提出因為有 數位全像術、生物微培養器、活細胞量測的重點而找出了 three-dimensional sh的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了three-dimensional sh,大家也想知道這些:

Linear Canonical Transforms: Theory and Applications

為了解決three-dimensional sh的問題,作者Healy, J. J. (EDT)/ Kutay, M. A. (EDT)/ Ozaktas, H. M. (EDT)/ Sh 這樣論述:

This book provides a clear and accessible introduction to the essential mathematical foundations of linear canonical transforms from a signals and systems perspective. Substantial attention is devoted to how these transforms relate to optical systems and wave propagation. There is extensive coverage

of sampling theory and fast algorithms for numerically approximating the family of transforms. Chapters on topics ranging from digital holography to speckle metrology provide a window on the wide range of applications.This volume will serve as a reference for researchers in the fields of image and

signal processing, wave propagation, optical information processing and holography, optical system design and modeling, and quantum optics. It will be of use to graduate students in physics and engineering, as well as for scientists in other areas seeking to learn more about this important yet relat

ively unfamiliar class of integral transformations. John J. Healy was born in Dublin. He was awarded the BE and PhD degrees in electronic engineering by University College Dublin in 2005 and 2010. He worked as a Postdoctoral Fellow in Universidad Nacional Autónoma de México (UNAM) and Maynooth Uni

versity. Healy is a member of IEEE, OSA and SPIE. He was a finalist in the European Community "Best PhD thesis in Computational Methods in Applied Sciences and Engineering 2010", and was awarded a Postdoctoral Fellowship from Irish Research Council for Science, Engineering and Technology (IRCSET) in

2010, and a NUI Fellowship in the Sciences in 2012. Since January 2015, he has been a Lecturer in Electronic Engineering at University College Dublin and Beijing Dublin International College at BJUT. His research interests span computational and applied optics, including the linear canonical transf

orm, sampling theory, digital holography and 3D imaging, and time-frequency representations.M. Alper Kutay received his BS, MS and PhD degrees in Electrical and Electronics Engineering from Bilkent University, Ankara in 1993, 1995 and 1999 respectively. Between March 1999 and July 2000 he was at the

Communications and Signal Processing Laboratory, Drexel University, Philadelphia as a Postdoctoral Research Associate. He has been with The Scientific and Technological Research Council of Turkey (TUBITAK) since 2000. Positions he held include Acting Vice President of TUBITAK, Acting Director of th

e Advanced Technologies Research Institute, Project Leader, and Systems Engineer. He is currently Advisor to the President. He has been the technical leader of numerous research and development projects. He has published 25 refereed journal articles and 3 book chapters, and is the coauthor of The Fr

actional Fourier Transform (Wiley 2001). His publications have received more than 1500 citations. His research interests include signal detection, parameter estimation, radar signal processing, and time-frequency analysis.Haldun M. Ozaktas received a BS degree from Middle East Technical University,

Ankara in 1987, and a PhD degree from Stanford University, California in 1991. He joined Bilkent University, Ankara in 1991, where he is presently Professor of Electrical Engineering. In 1992 he was at the University of Erlangen-Nürnberg, Bavaria as an Alexander von Humboldt Foundation Postdoctoral

Fellow. Over the summer of 1994 he worked as a Consultant at Bell Laboratories, New Jersey. He is the author of over 110 refereed journal articles, 15 book chapters, and over 110 conference presentations and papers, about 45 of which have been invited. He is author of The Fractional Fourier Transfor

m (Wiley 2001) and editor of Three-Dimensional Television (Springer 2008) and Linear Canonical Transforms (Springer 2015). A total of over 5000 citations to his work are recorded in the Science Citation Index (ISI). He is the recipient of the 1998 ICO International Prize in Optics and one of the you

ngest recipients ever of the Scientific and Technical Research Council of Turkey (TUBITAK) Science Award (1999), among other awards and prizes. Haldun M. Ozaktas was also one of the youngest persons elected to full membership of the Turkish Academy of Sciences. He is a Fellow of OSA, SPIE, and IEEE.

His academic interests include optical information processing, signal and image processing, and optoelectronic and optically interconnected computing systems.John T. Sheridan, BE (NUIG), MScEE (Georgia Tech), DPhil (Oxford University), held an Alexander von Humboldt Foundation Postdoctoral Research

Fellowship in Erlangen-Nürnberg University and was a Visiting Scientist at the European Commission Joint Research Centre in Italy. He was appointed as a Permanent Lecturer in Dublin Institute of Technology in 1997. He joined the School of Electrical and Electronic Engineering, University College Du

blin in 2000, where he is currently Professor of Optical Engineering. He is the co-founder and Director of Equilume Ltd. In 2014 he became an SPIE Fellow. He has authored over 400 publications and chairs several international conferences.

利用小鼠動物模式探討懸浮顆粒PM2.5誘發 急性肺臟損傷之機轉

為了解決three-dimensional sh的問題,作者蔡慶宏 這樣論述:

研究目的:吸入細懸浮微粒2.5 (particulate matter 2.5, PM2.5)會引發肺臟組織的嚴重發炎反應而導致肺損傷,腎素-血管緊張素系統(renin-angiotensin system, RAS)與發炎性肺病變的致病機制及炎症反應的調節具有關連性,經由血管緊張素轉換酶(angiotensin-converting enzyme, ACE)/血管緊張素II(angiotensin II, Ang II) 途徑所生成的第二型血管緊張素轉換酶 (angiotensin-converting enzyme 2, ACE2) 具保護及對抗肺部疾發炎反應的作用。然而,僅有少數研究關

注在PM2.5與ACE2之間的關係,因此本研究主旨在探討ACE2在PM2.5所誘發的急性肺損傷(acute lung injury,ALI)中的所扮演的角色。實驗方法:以城市中收集之PM2.5 暴露于C57BL/6小鼠 (wildtype, WT) 和ACE2基因剔除(ACE2 gene knockout, ACE2 KO)小鼠以建立PM2.5誘發ALI的動物模式。小鼠以氣管內滴注的方式一天給予一次PM2.5,共持續給予3天(6.25mg/kg/day),紀錄小鼠的生理變化,然後在PM2.5結束滴注後的第2天和第5天進行犧牲,採集肺臟組織進行後續生化、分生及病理分析。研究結果:WT和ACE2

KO小鼠的呼吸頻率、肺臟炎症細胞因子、ACE和MMPs的表現量均在結束滴注後第2天顯著提升。在結束滴注後第5天,因PM2.5所誘發的肺損傷在WT小鼠呈現修復情形,但是在ACE2 KO小鼠中僅有部分恢復的情況。結果指出PM2.5會透過肺臟的炎症反應誘發嚴重的ALI,並且在缺乏ACE2的情況下,暴露於PM2.5後的肺損傷修復情形會減弱。此外,我們的研究結果顯示PM2.5誘發的ALI與p-ERK1/2和p-STAT3信號傳遞路徑有關,且ACE2的缺損會增加PM2.5誘發的ALI中肺部的p-STAT3和p-ERK1/2表現量。結 論:這是首次使用PM2.5誘發肺損傷的小鼠模式來研究ACE2缺損的

影響, ACE2的缺損會減緩PM2.5滴注後的組織損傷修復、炎症反應和組織重塑。代表ACE2在PM2.5誘發的急性肺損傷具有保護作用。

生物微培養器研製及其應用於數位全像顯微活細胞觀測

為了解決three-dimensional sh的問題,作者葉仲禹 這樣論述:

本研究為研製生物微培養器系統維持生物細胞存活,並運用數位全像顯微鏡(Digital Holography Microscope, DHM)進行長時間(72 hrs.)活細胞量測,為了達到長時間連續觀測活細胞,本論文研製出可以放在顯微系統上的微型生物培養器系統。研製之微型培養器解決了現階段常會遇到實務應用上的問題,例如:溫控加熱不均、體型過大,沒有氣體系統導致能培養的細胞種類有所限制、成本過高等等,此研究運用微型控制器、低電壓電路設計與3D列印的技術,可依照量測系統做客製化設計,且改善製作成本、具有安全性,也能提供多種細胞生長、分裂之環境的生物微培養器,搭配數位全像顯微系統進行長時間的細胞觀測

與造影,本研究實驗結果可驗證此系統具實務可行性,並可應用於觀測細胞分裂等結果。