semiconductor physic的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

國立陽明交通大學 國際半導體產業學院 張翼所指導 石亞席的 藉由鈦/氮化矽反應和四氟化碳感應耦合電漿處理以達到低電阻歐姆接觸來提升氮化鎵高電子遷移率電晶體表現 (2021),提出semiconductor physic關鍵因素是什麼,來自於氮化鎵、歐姆接、低電阻、電漿處理、氮化矽。

而第二篇論文國立陽明交通大學 國際半導體產業學院 吳添立 博士所指導 薩其的 惡劣環境下氮化鎵功率元件的評估 (2021),提出因為有 氮化鎵的高電子遷移率電晶體、氮化鎵的金屬-絕緣體-半導體高電子遷移率電晶體、氮化鎵肖特基能障二極體、p型氮化鎵的閘極金屬-絕緣體-半導體高電子遷移率電晶體、伽瑪輻射、質子輻射、低溫的重點而找出了 semiconductor physic的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了semiconductor physic,大家也想知道這些:

藉由鈦/氮化矽反應和四氟化碳感應耦合電漿處理以達到低電阻歐姆接觸來提升氮化鎵高電子遷移率電晶體表現

為了解決semiconductor physic的問題,作者石亞席 這樣論述:

摘 要 iAbstract ii誌 謝 iiiTable of Contents ivList of Tables viiList of Figures viiiChapter 1 1Introduction 11.1 General Background 11.2 The AlGaN/GaN Heterostructure and Two-Dimensional Electron Gas (2DEG) 21.3 Motivation 31.4 Thesis Content 4Chapter 2

8Literature Review 82.1 Metal-Semiconductor contact 82.2 Ohmic Contact mechanism 92.3 Ohmic contact types 102.3.1 Planar Contacts 102.3.2 Recessed contacts 112.3.3 Regrowth contacts 122.4 Surface plasma treatment 13Chapter 3 17Experiment and Fabrication Proc

ess 173.1 Process Flow of Device Fabrication 173.1.1 Epitaxy Wafer Structure 173.1.2 Wafer Cleaning 173.1.3 Silicon Nitride Passivation 173.1.4 Define Ohmic Pattern 183.1.5 Plasma Treatment 183.1.6 Ohmic Contact Formation 183.1.7 Mesa Isolation 193.1.8 Gate Process 1

93.1.9 Conventional Process 203.2 Characterization of Material Properties 203.2.1 XPS 203.2.2 HR-XRD 213.2.3 Hall Effect Measurement 223.3 Characterization of Electrical Properties 223.3.1 TLM 223.3.2 DC Measurement 233.3.3 On-state Stress Measurement 23Chapter 4

28Results and Discussion 284.1 Experiment Overview 284.1 Development of Low Resistance Ohmic Contact 284.2 Validate Ti/SiNx reaction 304.3 XPS Surface Analysis 314.4 XRD Analysis 324.4 XRR Analysis 334.5 Hall effect measurement 334.6 DC Characteristics

34chaper 5 48Conclusion 48References 50

惡劣環境下氮化鎵功率元件的評估

為了解決semiconductor physic的問題,作者薩其 這樣論述:

Acknowledgement i摘要 iiiAbstract vTable of Contents viiList of Figures ixList of Tables xivChapter 1 Introduction 11-1 Introduction to Radiation-Hardened Electronics 11-2 Impact of Radiation 41-2-1 Gamma (γ) ray damage effects 61-2-2 Proton radiation damage

effects 81-2-3 Total Ionizing Dose (TID) Effect 81-2-4 Displacement Damage (DD) Effect 91-2-5 Single Event Effect (SEE) 101-3 Semiconductor Materials 101-4 Defects of Gallium Nitride Material 141-5 AlGaN/GaN High Electron Mobility Transistor (HEMT) 141-5-1 C

rystal Structure and Polarization 141-5-2 AlGaN/GaN heterostructure 161-6 Advanced GaN HEMT 171-6-1 GaN MIS-HEMT 181-6-2 p-GaN gate HEMT 191-6-3 GaN SBD 211-7 Test Standards for Device Qualification 221-8 Structure of the thesis 23Chapter 2 GaN MIS-HEMTs

under Radiation 252-1 Measurement Condition 282-1-1 Static and Dynamic Measurement 282-1-2 Radiation Condition 302-2 Results and Discussion 312-2-1 γ-irradiation on GaN MIS-HEMT (600V/30A) 312-2-2 γ-irradiation on GaN MIS-HEMT (1000V/30A) 372-2-3 Proton irra

diation on GaN MIS-HEMT (1000V/30A) 442-3 Summary 52Chapter 3 GaN MIS-HEMTs under Extreme Temperature 533-1 Measurement Techniques 543-1-1 Cryogenic Temperature condition 543-1-2 High Temperature condition 563-2 Results and Discussion 573-2-1 GaN MIS-HEMT under

Cryogenic Temperature 573-2-2 GaN MIS-HEMT under High Temperature 643-2-3 GaN SBD under High Temperature 683-3 Summary 69Chapter 4 p-GaN HEMTs under Radiation 714-1 Measurement Techniques 734-1-1 Static and Dynamic Measurement 734-1-2 Radiation Condition 75

4-2 Results and Discussion 754-2-1 Static Characteristics 754-3 Summary 78Chapter 5 Conclusions and Future Work 79Reference 82