V parameter in optic的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列免費下載的地點或者是各式教學

國立臺灣科技大學 光電工程研究所 廖顯奎所指導 Lina Marlina的 Theoretical Study of DWDM Lightwave Transmission Accompany FBG Sensing (2021),提出V parameter in optic關鍵因素是什麼,來自於。

而第二篇論文國立臺灣科技大學 化學工程系 陳秀美所指導 蕭奕岷的 細菌視紫質單層塗覆光電感測晶片的光控制自旋過濾特性探討 (2021),提出因為有 光電感測晶片、細菌視紫質、光控制自旋過濾的重點而找出了 V parameter in optic的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了V parameter in optic,大家也想知道這些:

Theoretical Study of DWDM Lightwave Transmission Accompany FBG Sensing

為了解決V parameter in optic的問題,作者Lina Marlina 這樣論述:

The main subject of this thesis is to simulate the wavelength division multiplexing (WDM) using dispersion compensate fiber (DCF) placed in different positions in transmission links and the proposed model of combined with fiber Bragg grating (FBG). We developed the simulation by using the Optisyste

m15. The eight WDM data channels were successfully used to transmit the data at a 40 Gbps data rate with 0.8 nm spacing using different transmission modes. The data is transmitted using a variety of unidirectional and bidirectional transmission modes. The transmission system sent the signal at 200 k

m of single-mode fiber (SMF) with a dispersion value of 18 ps/nm/km and compensated with a 40 km length of DCF with dispersion -90 ps/nm/km. However, the consideration of long-haul communication has matters related to fiber loss and dispersion that can influence the system performance. Hence, the id

ea of using DCF is to become a solution and proposed three DCF different positions in the transmission link to observe the impact of dispersion control on the result. In the first proposed scheme, DCF is placed before the SMF in the transmission link to achieve the higher BER 2.16 × 10-8 and Q-facto

r 5.78. However, the second proposed scheme is post compensation, where DCF is put after SMF in transmission link can obtain higher BER of 3.42 × 10-10 with Q-factor of 6.49. Finally, the mix compensates fiber is used in the transmission to achieve BER 3.35 × 10-9 and a Q-factor value of 6.18. Resul

ts have demonstrated that the better performance among them is post compensate fiber. The WDM system is also analyzed using a different modulation type, including non-return zero (NRZ) and return zero (RZ) modulation format. It simulates several conditions with varying lengths of SMF. According to t

he combination model of 4 FBGs, an optical sensor network with eight data channel transmissions is successfully transmitting the data using NRZ modulation format at 10 Gbps data rate with channel spacing between two adjacent deployed FBG temperature sensors should be at least around 189.759 GHz.Usin

g the 40 km long transmission line, the BER can be achieved at 1.42 ×10-14. The expected temperature ranges of the FBG optical sensor from -20 up to 80°C with 20°C steps increment with the FBG reflected signal changes by 0.17 THz. The maximum length of fiber span for this system is 14 km.

細菌視紫質單層塗覆光電感測晶片的光控制自旋過濾特性探討

為了解決V parameter in optic的問題,作者蕭奕岷 這樣論述:

含有光敏性細菌視紫質(bacteriorhodopsin, BR)的紫膜(purple membrane, PM),具有手性誘導自旋選擇性(chiral-induced spin selectivity, CISS),且具有光控制自旋過濾(light-controlled spin filtering)的效果。本研究針對實驗室先前所開發以單層PM為光電訊號轉換器的各式光電生物感測晶片,進行光控制過濾行為探討,檢測對象包含小分子核糖核酸、糖化血色素、抗生素、真菌以及革蘭氏陰性菌,且晶片分別以不同架橋來固定化感測辨識分子。首先,使用循環伏安法(cyclic voltammetry, CV)對各晶

片製程中各塗覆層在不同光照及磁場控制下進行其氧化與還原峰電流值量測,並計算自旋極化率(spin polarization, SP)。結果發現各感測晶片之所有塗覆層的氧化與還原峰電流值在光激發時均大於無照光時;外加磁場時,氧化與還原峰電流值會增加,且當磁鐵內部磁力線方向(S→N極)與晶片層層塗覆方向同向時,效果會大於另一磁力線方向,因此晶片在光激發時其SP值會低於無照光時,此意味著BR的光驅動質子傳遞效應會增加晶片的氧化及還原峰電流值,但同時也會降低電子自旋過濾效果;此外,對各種檢測晶片,塗覆層種類變化與SP值下降程度間並無顯著相關性。其次,利用電化學阻抗頻譜法(electrochemical

impedance spectroscopy, EIS)對各感測晶片製程中的各塗覆層進行量測,以了解不同塗覆層對晶片的阻抗變化影響以及CV峰電流值變化的原因。阻抗分析結果發現,晶片在光激發時均低於無照光時;外加磁場時阻抗值均會降低,且當磁鐵內部磁力線方向與晶片層層塗覆方向同向時,阻抗值會小於另一磁力線方向時。此結果隱喻晶片各塗覆層的阻抗變化會導致其氧化及還原峰電流值的變化,阻抗下降時其峰電流值會上升;此外,也顯示BR的光控制自旋過濾效果不會因塗覆層的增加或不同而消失。最後,將各種感測晶片對不同濃度目標物進行檢測並同時分析其阻抗值變化,結果發現,晶片阻抗值變化程度與目標物濃度間呈半對數線性關係,

且同一種檢測晶片間的相對標準偏差(relative standard deviation, RSD)均低於2 %,顯示阻抗值可作為以單層PM為基底之生物感測晶片的一種檢測參數。